98 research outputs found

    Resilience trinity: Safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority

    Improving the forecast for biodiversity under climate change

    Get PDF
    Acknowledgments: This paper originates from the “Ecological Interactions and Range Evolution Under Environmental Change” and “RangeShifter” working groups, supported by the Synthesis Centre of the German Centre for Integrative Biodiversity Research (DFG-FZT-118), DIVERSITAS, and its core projects bioDISCOVERY and bioGENESIS. Supported by the Canada Research Chair, Natural Sciences and Engineering Research Council of Canada, and Quebec Centre for Biodiversity Science (A.G.); the University of Florida Foundation (R.D.H.); KU Leuven Research Fund grant PF/2010/07, ERA-Net BiodivERsA TIPPINGPOND, and Belspo IAP SPEEDY (L.D.M.); European Union Biodiversity Observation Network grant EU-BON-FP7-308454 (J.-B.M. and G.P.); KU Leuven Research Fund (J.P.); and NSF grants DEB-1119877 and PLR-1417754 and the McDonnell Foundation (M.C.U.).Peer reviewedPostprin

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority

    Spatially and Financially Explicit Population Viability Analysis of Maculinea alcon in The Netherlands

    Get PDF
    Background The conservation of species structured in metapopulations involves an important dilemma of resource allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because none of the population dynamics models developed so far included dispersal. Methodology/Principal Findings We developed the first spatially and financially explicit Population Viability Analysis model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features are affecting the ability to enhance population viability of four basic management options, designed to incur the same costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch network. Conclusions/Significance Our results underline the importance of spatial and regional aspects (dispersal and connectivity) in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate that failure to account for the cost of management scenarios can lead to very different conclusions

    Honey bee colony performance affected by crop diversity and farmland structure: a modeling framework

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordForage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics, PH and PP, which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower, PH and PP were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass–dandelion pasture, trefoil–grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, and PH (269.5 kg) and PP (108 kg) being above viability thresholds for 5 yr. Overall, trefoil–grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps.German Academic Exchange ServiceHelmholtz Interdisciplinary GRADuate School for Environmental ResearchBiotechnology and Biological Sciences Research Council (BBSRC

    Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO)

    Get PDF
    Assessments of the status and trends of habitats, species and ecosystems are needed for effective ecosystem-based management in marine ecosystems. Knowledge on imminent ecosystem changes (climate change impacts) set in train by existing climate forcings are needed for adapting management practices to achieve conservation and sustainabililty targets into the future. Here, we describe a process for enabling a marine ecosystem assessment (MEA) by the broader scientific community to support managers in this way, using a MEA for the Southern Ocean (MEASO) as an example. We develop a framework and undertake an audit to support a MEASO, involving three parts. First, we review available syntheses and assessments of the Southern Ocean ecosystem and its parts, paying special attention to building on the SCAR Antarctic Climate Change and Environment report and the SCAR Biogeographic Atlas of the Southern Ocean. Second, we audit available field observations of habitats and densities and/or abundances of taxa, using the literature as well as a survey of scientists as to their current and recent activities. Third, we audit available system models that can form a nested ensemble for making, with available data, circumpolar assessments of habitats, species and food webs. We conclude that there is sufficient data and models to undertake, at least, a circumpolar assessment of the krill-based system. The auditing framework provides the basis for the first MEASO but also provides a repository (www.SOKI.aq/display/MEASO) for easily amending the audit for future MEASOs. We note that an important outcome of the first MEASO will not only be the assessment but also to advise on priorities in observations and models for improving subsequent MEASOs
    corecore