3,321 research outputs found

    The Mass Distribution of the Strong Lensing Cluster SDSS J1531+3414

    Full text link
    We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z=0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New HST observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the center region, and rule out that this emission is coming from a background source.Comment: 8 pages, 5 figures; Submitted to Ap

    Star Formation at z=2.481 in the Lensed Galaxy SDSS J1110+6459, I: Lens Modeling and Source Reconstruction

    Get PDF
    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z~2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z = 0.659, with a total magnification ~30x across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray trace the model to the image plane, convolve with the instrumental point spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray tracing, by accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift.Comment: 19 pages, 12 figures, accepted to Ap

    Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    Full text link
    SDSS J2222+2745 is a galaxy cluster at z=0.49, strongly lensing a quasar at z=2.805 into six widely separated images. In recent HST imaging of the field, we identify additional multiply lensed galaxies, and confirm the sixth quasar image that was identified by Dahle et al. (2013). We used the Gemini North telescope to measure a spectroscopic redshift of z=4.56 of one of the secondary lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a second lensed galaxy at z=2.3. This second galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al. (2015), who found tAB=47.7+/-6.0 days and tAC=-722+/-24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are tAD=502+/-68 days, tAE=611+/-75 days, and tAF=415+/-72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.Comment: 16 pages, 11 figures; submitted to Ap

    Spatially Resolved Patchy Lyman-α\alpha Emission Within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Get PDF
    We report the detection of extended Lyman-α\alpha emission from the host galaxy of SDSS~J2222+2745, a strongly lensed quasar at z=2.8z = 2.8. Spectroscopic follow-up clearly reveals extended Lyman-α\alpha in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging, and resolve spatial scales as small as \sim200 parsecs. In the source plane we recover the host galaxy morphology to within a few hundred parsecs of the central AGN, and map the extended Lyman-α\alpha emission to its physical origin on one side of the host galaxy at radii \sim0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyman-α\alpha and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyman-α\alpha, host galaxy Lyman-α\alpha, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.Comment: Accepted to ApJ Letters; 7 pages, 5 figure

    Strong Lens Models for 37 Clusters of Galaxies from the SDSS Giant Arcs Survey

    Full text link
    We present strong gravitational lensing models for 37 galaxy clusters from the SDSS Giant Arcs Survey. We combine data from multi-band Hubble Space Telescope WFC3imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, APO, and MMT, in order to detect and spectroscopically confirm new multiply-lensed background sources behind the clusters. We report spectroscopic or photometric redshifts of sources in these fields, including cluster galaxies and background sources. Based on all available lensing evidence, we construct and present strong lensing mass models for these galaxy clusters.Comment: 53 pages; submitted to ApJ

    Accessing elite nurses for research: reflections on the theoretical and practical issues of telephone interviewing

    Get PDF
    Elite groups are interesting as they frequently are powerful (in terms of position, knowledge and influence) and enjoy considerable authority. It is important, therefore, to involve them in research concerned with understanding social contexts and processes. This is particularly pertinent in healthcare, where considerable strategic development and change are features of everyday practice that may be guided or perceived as being guided, by elites. This paper evolved from a study investigating the availability and role of nurses whose remit involved leading nursing research and development within acute NHS Trusts in two health regions in Southern England. The study design included telephone interviews with Directors of Nursing Services during which time the researchers engaged in a reflective analysis of their experiences of conducting research with an `elite' group. Important issues identified were the role of gatekeepers, engagement with elites and the use of the telephone interview method in this context. The paper examines these issues and makes a case for involving executive nurses in further research. The paper also offers strategies to help researchers design and implement telephone interview studies successfully to maximise access to the views and experiences of `hard to reach groups', such as elites, while minimising the associated disruption

    The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis

    Get PDF
    This is the post-print version of the final paper published in The Journal of Pain. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 The American Pain Society.Graded motor imagery (GMI) is becoming increasingly used in the treatment of chronic pain conditions. The objective of this systematic review was to synthesize all evidence concerning the effects of GMI and its constituent components on chronic pain. Systematic searches were conducted in 10 electronic databases. All randomized controlled trials (RCTs) of GMI, left/right judgment training, motor imagery, and mirror therapy used as a treatment for chronic pain were included. Methodological quality was assessed using the Cochrane risk of bias tool. Six RCTs met our inclusion criteria, and the methodological quality was generally low. No effect was seen for left/right judgment training, and conflicting results were found for motor imagery used as stand-alone techniques, but positive effects were observed for both mirror therapy and GMI. A meta-analysis of GMI versus usual physiotherapy care favored GMI in reducing pain (2 studies, n = 63; effect size, 1.06 [95% confidence interval, .41, 1.71]; heterogeneity, I2 = 15%). Our results suggest that GMI and mirror therapy alone may be effective, although this conclusion is based on limited evidence. Further rigorous studies are needed to investigate the effects of GMI and its components on a wider chronic pain population.NHMR
    corecore