30 research outputs found

    An Improved DCM-based Tunable True Random Number Generator for Xilinx FPGA

    Get PDF
    True Random Number Generators (TRNGs) play a very important role in modern cryptographic systems. Field Programmable Gate Arrays (FPGAs) form an ideal platform for hardware implementations of many of these security algorithms. In this paper we present a highly efficient and tunable TRNG based on the principle of Beat Frequency Detection (BFD), specifically for Xilinx FPGA based applications. The main advantages of the proposed TRNG are its on-the-fly tunability through Dynamic Partial Reconfiguration (DPR) to improve randomness qualities. We describe the mathematical model of the TRNG operations, and experimental results for the circuit implemented on a Xilinx Virtex-V FPGA. The proposed TRNG has low hardware footprint and in-built bias elimination capabilities. The random bitstreams generated from it passes all tests in the NIST statistical testsuite

    Exploring Self-Repair in a Coupled Spiking Astrocyte Neural Network

    Get PDF
    It is now known that astrocytes modulate the activity at the tripartite synapses where indirect signaling via the retrograde messengers, endocannabinoids, leads to a localized self-repairing capability. In this paper, a self-repairing spiking astrocyte neural network (SANN) is proposed to demonstrate a distributed self-repairing capability at the network level. The SANN uses a novel learning rule that combines the spike-timing-dependent plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM) learning rules (hereafter referred to as the BSTDP rule). In this learning rule, the synaptic weight potentiation is not only driven by the temporal difference between the presynaptic and postsynaptic neuron firing times but also by the postsynaptic neuron activity. We will show in this paper that the BSTDP modulates the height of the plasticity window to establish an input-output mapping (in the learning phase) and also maintains this mapping (via self-repair) if synaptic pathways become dysfunctional. It is the functional dependence of postsynaptic neuron firing activity on the height of the plasticity window that underpins how the proposed SANN self-repairs on the fly. The SANN also uses the coupling between the tripartite synapses and γ -GABAergic interneurons. This interaction gives rise to a presynaptic neuron frequency filtering capability that serves to route information, represented as spike trains, to different neurons in the subsequent layers of the SANN. The proposed SANN follows a feedforward architecture with multiple interneuron pathways and astrocytes modulate synaptic activity at the hidden and output neuronal layers. The self-repairing capability will be demonstrated in a robotic obstacle avoidance application, and the simulation results will show that the SANN can maintain learned maneuvers at synaptic fault densities of up to 80% regardless of the fault locations

    Remote dynamic partial reconfiguration: A threat to Internet-of-Things and embedded security applications

    Get PDF
    The advent of the Internet of Things has motivated the use of Field Programmable Gate Array (FPGA) devices with Dynamic Partial Reconfiguration (DPR) capabilities for dynamic non-invasive modifications to circuits implemented on the FPGA. In particular, the ability to perform DPR over the network is essential in the context of a growing number of Internet of Things (IoT)-based and embedded security applications. However, the use of remote DPR brings with it a number of security threats that could lead to potentially catastrophic consequences in practical scenarios. In this paper, we demonstrate four examples where the remote DPR capability of the FPGA may be exploited by an adversary to launch Hardware Trojan Horse (HTH) attacks on commonly used security applications. We substantiate the threat by demonstrating remotely-launched attacks on Xilinx FPGA-based hardware implementations of a cryptographic algorithm, a true random number generator, and two processor-based security applications - namely, a software implementation of a cryptographic algorithm and a cash dispensing scheme. The attacks are launched by on-the-fly transfer of malicious FPGA configuration bitstreams over an Ethernet connection to perform DPR and leak sensitive information. Finally, we comment on plausible countermeasures to prevent such attack

    An FPGA-based hardware-efficient fault-tolerant astrocyte-neuron network

    Get PDF
    The human brain is structured with the capacity to repair itself. This plasticity of the brain has motivated researchers to develop systems which have similar capabilities of fault tolerance and self-repair. Recent research findings have proven that interactions between astrocytes and neurons can actuate brain-like self-repair in a bidirectionally coupled astrocyte-neuron system. This paper presents a hardware realization of the bio-inspired self-repair architecture on an FPGA. We also introduce a reduced architecture for an FPGA-based hardware-efficient fault-tolerant system. This is based on the principle of retrograde signaling in an astrocyte-neuron network by simplifying the calcium dynamics within the astrocyte. The hardware optimized implementation shows more than a 90% decrease in hardware utilization and proves an efficient implementation for a large-scale astrocyte-neuron network. An Average spike rate of 0:027 spikes per clock cycle were observed for both the proposed models of astrocytes in the case of 100% partial fault

    Bio-inspired Anomaly Detection for Low-cost Gas Sensors

    Get PDF
    This paper proposes a novel anomaly detection method for gas sensors using spiking neural network principles. The synapse models with excitatory/inhibitory responses and a single spiking neuron are employed to develop the bio-inspired anomaly detector for a single gas sensor. The approach can detect anomalies in the data, which is collected by the gas sensor by identifying rapid changes rather than a magnitude threshold. In particular, the false-positive detections due to the drifts of low-cost sensors are minimised using the proposed bio-inspired approach. Using the chemicals of surgical spirits and isobutanol as test substances, experiments were carried out to evaluate the proposed method. Results demonstrate that gas anomalies can be detected when the chemical substances are presented to the sensor. In addition, results show that the approach can detect under the presence of sensor drift. The proposed bio-inspired detector was implemented on FPGA hardware, which demonstrates relatively low resources. Compact and energy efficient CMOS-based implementations of the synapse are also available which supports the low-cost potential applications of this approach, e.g. use in safety with drones and ground robots in hazardous scene detection

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Predicting Drug Review Polarity Using the Combination Model of Multi-Sense Word Embedding and Fuzzy Latent Dirichlet Allocation (FLDA)

    No full text
    The massive volume of textual data generated in recent years has led to the development of new computer-based technologies, especially in the field of healthcare area. Sentiment analysis opens a new door in healthcare to improve public health data analysis and efficiently predict diseases. Many words in natural language have multiple meanings or senses. However, traditional algorithms mainly focus on a single meaning but cannot capture the multiple senses of the words, leading to potential inaccuracies in sentiment analysis. Additionally, dealing with vagueness in linguistic terms is a common challenge in natural language processing; particularly, applying simple frequency terms is insufficient to measure the development states of different topics. In this research, we applied two multi-sense word embedding models, Probabilistic Fasttext and Multi-sense Skip-gram, to the sentiment analysis of drug reviews. The proposed models can better represent words with multiple meanings, producing more accurate sentiment analysis results. Additionally, we compared multi-sense word embedding with single embedding models and evaluated the classification methods compared to other classical machine learning technologies. Finally, the Fuzzy system was applied to estimate the topics hidden in the drug review dataset using the Latent Dirichlet Allocation (LDA) model; the Fuzzy rule-based system was applied to explain the classification result of drug review polarity. In particular, both models can have good performances during the classification task. Probabilistic Fasttext achieved an accuracy of 82.1%, and multi-sense skip-gram achieved an accuracy of 79.8%. The work has addressed several critical challenges related to sentiment analysis of healthcare data and has proposed a comprehensive approach to tackle them. The reported results indicate promising performance and the potential future applications in other medical domains beyond drug reviews further highlight the significance of this research

    Document Processing:Methods for Semantic Text Similarity Analysis

    No full text

    New Avenues for Automated Railway Safety Information Processing in Enterprise Architecture: An NLP Approach

    No full text
    Enterprise Architecture (EA) is crucial in any organisation as it defines the basic building blocks of a business. It is typically presented as a set of documents that help all departments understand the business model. In EA, safety documents are used to manage and understand safety risks. A novel similarity system for railway safety document processing is presented in this work. It measures the feasibility of automated updating of EA models with the Rule Book by verifying whether Rail Safety and Standards Board (RSSB’s) Rule Book clauses are present and complete in existing EA models. Additionally, a Natural Language Processing (NLP) based search feature was developed to drill through the database to find similar existing rules, principles, and clauses based on semantic similarity. The result will display the most similar clauses and rules with similarity scores and document names. In this study, different pre-trained Electra Small, DistilBERT (Distillation Bidirectional Encoder Representations from Transformers) Base and BERT (Bidirectional Encoder Representations from Transformers) Base were used to embed text. Additionally, the similarity between document rules was measured by cosine similarity metrics. With conclusive evidence, our findings show that BERT Base exceeds the other embedding methods in the semantic comparison of documents
    corecore