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Abstract

The advent of the Internet of Things has motivated the use of Field Programmable Gate Array (FPGA)
devices with Dynamic Partial Reconfiguration (DPR) capabilities for dynamic non-invasive modifications to
circuits implemented on the FPGA. In particular, the ability to perform DPR over the network is essential
in the context of a growing number of Internet of Things (IoT)-based and embedded security applications.
However, the use of remote DPR brings with it a number of security threats that could lead to poten-
tially catastrophic consequences in practical scenarios. In this paper, we demonstrate four examples where
the remote DPR capability of the FPGA may be exploited by an adversary to launch Hardware Trojan

Horse (HTH) attacks on commonly used security applications. We substantiate the threat by demon-
strating remotely-launched attacks on Xilinx FPGA-based hardware implementations of a cryptographic
algorithm, a true random number generator, and two processor based security applications - namely, a soft-
ware implementation of a cryptographic algorithm and a cash dispensing scheme. The attacks are launched
by on-the-fly transfer of malicious FPGA configuration bitstreams over an Ethernet connection to perform
DPR and leak sensitive information. Finally, we comment on plausible countermeasures to prevent such
attacks.

Keywords: Internet of Things, Dynamic Partial Reconfiguration, Field Programmable Gate Array,
Hardware Trojan Horse, Hardware Security

1. Introduction

Internet of Things (IoT) today is a network of
physical objects or things, embedded with electron-
ics, software, sensors, and network connectivity,
that can be sensed and controlled remotely across
the existing communication network infrastructure.
This ensemble of uniquely identifiable objects cre-
ates opportunities for more direct integration be-
tween the physical world and computer-based sys-
tems, resulting in improved efficiency, accuracy, and
economic benefit [1]. Since IoT applications are of-
ten constrained by the dual requirements of high
performance and parsimony of resources, the use of
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reconfigurable hardware has gained popularity. FP-
GAs are frequently used in IoT applications today
due to their highly reconfigurable properties [2].

A recent extension to flexible reconfiguration ca-
pabilities of FPGAs is in the form of Dynamic Par-

tial Reconfiguration (DPR). DPR allows dynamic,
energy-efficient non-invasive modification of the ex-
isting circuit on the FPGA, mostly to enhance
functionality in the form of added plug-ins. The
“plug-and-play” philosophy is particularly suitable
for IoT applications since it supports multiple func-
tions at a very large scale without the need for hav-
ing dedicated hardware available at all times. DPR-
enabled FPGAs are thus ideal choices for IoT ap-
plications. DPR-enabled FPGAs have already be-
come the platform of choice for certain distributed
applications (e.g. deep neural network based image
search), due to lower power consumption, lower re-
configuration latency and lower memory bandwidth
requirements [3].
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DPR of FPGAs has been around in academia for
more than two decades and have started to be em-
ployed in industrial applications. Recently, Xilinx
has come up with solutions for cost sensitive appli-
cations targeting Industrial IoT (IIoT) [4, 5]. Intel
and Microsoft, have started using FPGAs for indus-
trial applications. Emerging IoT applications, such
as Smart City infrastructure, intelligent factory au-
tomation, Smart Grid, and data center accelera-
tion, already use Intel (Formerly Altera) FPGAs
to take advantage of hardware and software pro-
grammability, security, and high-performance fea-
tures [2]. Intel Xeon E5 server processors chips
combined with Altera’s FPGAs is a recent enhance-
ment for IIoT applications. Also, Intel’s collabo-
ration with Alibaba uses FPGAs for accelerating
business applications [6]. Microsoft has also re-
ported the applications of FPGAs in IIoT Neural
Networks [7].
In this paper, we focus on remote DPR, where

a bitstream is transferred to the FPGA remotely
over the network to reconfigure one or more appli-
cations embedded on the FPGA. The fact that IoT
applications often require a large number of devices
to communicate remotely makes this a very pow-
erful tool. However, despite the many advantages
that remote DPR provides, it could lead to security
threats that, unless addressed properly, have poten-
tially catastrophic implications in practical IoT en-
vironments. According to survey results presented
in [8], close to half (49%) of the respondents felt
that IoT would roughly have the same level of secu-
rity issues as the previous waves of technology. Of
those who thought differently, slightly more were
optimistic (21%) than pessimistic (17%). This sur-
vey also says that “The IoT is and will be a great
security challenge and an opportunity for new ways
of thinking about ecologies of security”. To the best
of our knowledge, the idea of using remote DPR
for inserting Hardware Trojan Horse (HTH) was
first reported in [9]. This work implants an add-on
HTH remotely via DPR by transferring bitstreams
corresponding to a malicious HTH. The newly im-
planted HTH extracts secret information from a
128-bit AES cryptographic core. A similar attack
on a True Random Number Generator (TRNG) has
been demonstrated in [10], in which an HTH cir-
cuit was introduced in the dynamic partition of
the FPGA via DPR to bias the response of the
TRNG. However, both of these above-mentioned
attacks can be prevented by a bitstream validation
mechanism, since the bitstream corresponding to

the add-on explicitly encodes the logic for the in-
serted HTH. In contrast, our proposed approach
does not directly insert an HTH circuit in the dy-
namic partition of the circuitry. Instead, it inserts
a malicious controller for DPR in the on-chip clock
management circuitry. This controller, in turn, in-
vokes single/multiple DPRs for configuring various
clock signals. The resulting patterned clock due to
the observations listed in Section 3, behaves ma-
liciously by posing a threat to the cryptographic
system. This paper is an extension of the work
published in [11].
The main contributions of this paper can be sum-

marized as follows:

1. In this paper, we demonstrate that remote
DPR-enabled FPGA-based systems can be
subjected to malicious circuit alterations, typi-
cally termed as Hardware Trojan Horse (HTH)
insertion via transmission of configuration bit-
streams over the network, to compromise the
security of one or more applications. This work
demonstrates a remote fault injection tech-
nique on an FPGA using configuration bit-
streams which invoke multiple DPRs in the
FPGA.

2. We demonstrate successful remote attacks
launched on Xilinx FPGA-based hardware im-
plementations of a cryptographic algorithm, a
true random number generator, and two pro-
cessor based security applications - namely, a
software implementation of a cryptographic al-
gorithm and a cash dispensing scheme. The
ability to remotely insert the HTH using the
non-invasive property of remote DPR makes
the attack model potent, easy to launch and
difficult to counter. The demonstrated attacks
imply that cryptographic hardware implemen-
tations in particular, which are omnipresent
for applications such as secure communication,
electronic fund transfer, etc. are extremely vul-
nerable if implemented on DPR-enabled FP-
GAs. Thus, remote DPR, although efficient,
may not be the most secure choice for IoT to-
day unless combined with appropriate counter-
measures.

The rest of the paper is structured as follows.
Section 2 describes a practical target architecture
for our attacks and points out some of the pros
and cons of remote DPR in the context of secure
IoT and embedded applications. Section 3–4 real-
izes these threats in the form of concrete case stud-
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ies on security critical applications mapped on the
FPGA. Section 5 presents actual experimental re-
sults establishing the effectiveness of the proposed
attacks. Section 6 proposes plausible countermea-
sures to prevent attacks via DPR. Finally, Section
7 concludes the paper.

2. Remote DPR: Architecture, Advantages
and Threats

A number of present day IoT applications use
FPGAs programmed with Cryptographic Hardware

Solutions (CHSs). CHS includes commonly used
hardware support for cryptography, e.g. hardware
security modules, secure cryptoprocessors, tamper-
resistant security modules, crypto-accelerators, em-
bedded crypto-engines and other crypto-primitives.
FPGAs programmed with CHS are potential tar-
gets for attacks by malicious agents, and are there-
fore of utmost importance in the context of overall
IoT security. In this section, we present a detailed
description of our target IoT architecture. It in-
cludes an FPGA with dynamic partial reconfigura-
tion properties, and we assume the FPGA is pro-
grammed with one or more cryptographic hardware
primitives. We then focus specifically on remote
DPR based threats to this target architecture that
could compromise its security.

2.1. Remote DPR Enabled IoT Architecture

Figure 1 depicts the architecture we are consid-
ering. The architecture consists of a DPR-enabled
FPGA, connected to a network over a standard
100 Mbps or 1 Gbps Ethernet connection, pro-
viding real-time computational capabilities. This
remote DPR capability of the FPGA is pivotal
to on-chip, hardware modifications/enhancements
and online hardware updates. This capability is
vital to IoT applications since it allows optimal
and scalable resource sharing. We further assume
that our target FPGA is programmed with some
cryptographic hardware solution (CHS). CHS in-
cludes commonly used hardware support for cryp-
tography such as hardware security modules, secure
cryptoprocessors, tamper-resistant security mod-
ules, crypto accelerators, embedded crypto-engines
and other crypto primitives. FPGAs programmed
with CHS are potential targets for attacks by ma-
licious agents, and are therefore of utmost impor-
tance in the context of overall IoT security.
In the target architecture, an authorized user is

allowed to perform remote DPR by transferring the

required partial configuration bitstream file over a
live Ethernet connection to the FPGA. Enabling
DPR on an FPGA partitions the FPGA logic into
two major parts - static and dynamic. The dy-
namic partition essentially comprises of the dy-
namic add-on modules to add or modify existing
functionality. The configuration of the dynamic
partition can be modified by DPR, while that of
the static partition remains unmodified for the en-
tire lifetime of the application being executed on
the FPGA. In our target FPGA set-up, we assume
that the static partition comprises of four major
components - the application core (e.g. a crypto-
graphic core or a processor), the Digital Clock Man-

ager (DCM) module residing in the clock manage-
ment tiles of the FPGA, and two controller modules
- a DPR controller and an Ethernet API controller.
The working of the DPR-enabled dynamic parti-
tion tiles is supervised by the master DPR con-
troller, which generates the necessary control sig-
nals for DPR to the Internal Configuration Access

Port (ICAP) [12]. The Ethernet API controller pro-
vides the much needed remote access channel for se-
cure communication to cryptographic applications,
as well as the remote transfer of DPR bitstreams.
The other important aspect of our target architec-
ture is the management of the data (both DPR and
cryptographic) that is transferred to the FPGA via
the Ethernet API controller. A popular choice is
the open-source Simple Interface for Reconfigurable

Computing (SIRC) platform [13, 9, 10]. SIRC con-
sists of both software and synthesizable hardware
components and facilitates the seamless transfer of
arbitrary data to an FPGA via high-level C++ API
calls. Moreover, SIRC is highly customizable and
is hence an ideal choice for IoT applications.
The feasibility of DPR methodology described

in the present paper has to be analysed in three
aspects: Firstly, the hardware support for achiev-
ing DPR, secondly, the DPR bitstream generation
and finally, an infrastructure for remote bitstream
transfer. The main hardware support for DPR is
an ICAP controller, a PR primitive for Xilinx FP-
GAs. Apart from the ICAP controller, the designer
needs to implement a DPR controller which gener-
ates necessary signals for the ICAP controller. In
our design, the DPR controller occupies 14 slices of
the FPGA, proving it to be a lightweight and hence
suitable for IoT application. Secondly, the bit-
stream generation is performed using Xilinx tools
which do not require any special paid license, en-
abling this to be an easy target for all DPR ap-
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Figure 1: The DPR enabled target architecture for demonstration of attack.

plications. Equally crucial is the network connec-
tivity of the FPGA, through which DPR files are
transferred. This is established using an Ethernet
API Controller. This is usually not an extra re-
quirement, as it is relatively straightforward to de-
sign and deploy FPGA boards with wireless (and
wired) connectivity, in fact, many such IoT moats
with wireless connectivity are already commercially
available [14]. In our application, we have demon-
strated the remote bitstream transfer using an open
source SIRC platform from Microsoft.
The fundamental advantage of remote DPR lies

in the fact that it enables a number of devices to
communicate remotely with each other to regulate
the functioning of a number of FPGA-based func-
tional modules, without the need for physical prox-
imity. This results in better connectivity and easier
management of a vast network of devices function-
ing simultaneously, especially in an IoT context. In
the following section, we examine in greater detail
how DPR may be used to address this crucial issue
of dynamic clock reconfiguration.

2.2. DPR for Custom Clock Synthesis

In this section, we focus on a specific scenario in
which DPR proves helpful in the context of our tar-
get architecture. At any given point of time, the dy-
namic partition of the FPGA consists of a number
of applications that are plugged in and reconfigured

Figure 2: Control signals for dynamic partial reconfiguration
of the digital clock manager.

on the fly. These applications may have varying re-
quirements of the clock frequency, which are usually
not known a priori. Hence, fixed clocking schemes
are not sufficient to cater to such varying require-
ments. DPR, on the other hand, provides a way to
address this issue by generating custom clocks on
the fly depending on the requirements for various
applications. The usual techniques to generate such
custom clocks is to use some clock generation cir-
cuitry such as the Phase Locked Loop (PLL) mod-
ule or the DCM module. In this paper, we focus
on the use of DCM due to its ease of use. The
DCM module is enabled in the Clock Management
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Tiles (CMTs) of the FPGA. We denote by FCLKIN

the input clock signal to the DCM and by FCLKFX

the corresponding synthesized clock signal. We fur-
ther define two major attributes of the DCM mod-
ule - the CLKFXMULTIPLY attribute with value
M and the CLKFXDIV IDE attribute with value
D. Given these attributes, the relation between the
input and output clock signals is given by:

FCLKFX = FCLKIN ×
M

D
(1)

The DPR capability of the FPGA allows modi-
fication of the M and D values during runtime to
synthesize various clock frequencies depending on
the requirements of various applications. Figure 2
shows the control signals via which dynamic par-
tial reconfiguration of the DCM takes place. The
first step is to remotely pass on to the FPGA via
an Ethernet connection, a configuration file con-
taining the specific bitstream corresponding to the
DCM controller. The DCM controller then gener-
ates the necessary control signals to the Dynamic

Reconfiguration Port (DRP) of the DCM module to
write the target M and D values, which are passed
on via the data input bus DI. The M and D val-
ues are then written in the specific reconfiguration
address provided by the DADDR input bus of the
DCM, provided that the write enable control sig-
nal DWE and the dynamic reconfiguration enable
signal DEN are both high, and so is the DRDY

signal indicating that the DCM is ready for recon-
figuration. The possible ranges for the M and D

are specific to the FPGA family used. For the tar-
get FPGA in our architecture, which belongs to the
Virtex-5 family, the range of the expression M

D
is be-

tween 2 and 32. This means that using DPR, one
can synthesize a clock up to 32 times faster than
the input clock.

2.3. An Example Application of DPR: Flexible

AES Encryption Circuit

We now demonstrate an example of an applica-
tion running on remote DPR enabled IoT architec-
ture discussed previously. Let us assume that the
static partition of the FPGA is mapped with a 128
bit AES encryption circuitry. Remote DPR can
be used to reconfigure the cryptographic circuit to
switch between specific modes of encryption such
as cipher block chaining (CBC), output feedback
(OFB), cipher feedback (CFB), and even tweakable
encryptions.

Figure 3: Architecture for DCM DPR through remote bit-
stream transfer for the AES encryption circuit.

Figure 4: Waveform details for DCM controller to dynami-
cally reconfigure an 100 MHz input clock signal to AES-128
encryption module.

For normal working of the 128-bit AES Encryp-
tion module mapped on to the FPGA, a clock sig-
nal has to be provided as input. This can be
provided from clock generation circuitry such as
Phase Locked Loop (PLL) or Digital Clock Manage-

ment (DCM) module. In our implementation, we
use DCMs for producing different clocks to all appli-
cations residing in the static or dynamic partition of
the design. In this particular test case application,
let us assume that remote DPR is configured to in-
troduce a DCM DPR controller in the dynamic par-
tition of the FPGA. This DPR controller for DCM
generates the necessary signals which configure the
output clock of DCM to 100 MHz, which is neces-
sary for functioning of AES Encryption. The sim-
plified representation of the example application is
shown in Figure 3. The timing diagram to demon-
strate the effect of the inserted bitstream on the
working of the DCM controller is demonstrated in
Figure 4. Other control signals DWE and DEN

are set to logic high level for one cycle to initiate
the DCM DPR phase. Once the clock is ready to
be used, the DRDY signal goes high. During the
DPR cycle, DCM is held in the reset state by as-
serting DCM RST . The setup requires a one-time
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transfer of a partial reconfiguration file to the DCM
controller of the FPGA using the remote connec-
tion, which in turn initiates a DPR instance via
the DRP ports of the DCM to reconfigure the clock
signal output to AES.

2.4. The Attack Model

Consider an FPGA connected to a network over
a standard 1 Gbps Ethernet connection, providing
real-time computational capabilities. One of the
services the FPGA hardware provides all users in
the user group connected to the network is real-time
private-key encryption of plaintexts transferred to
it via the network connection. The encryption key
is either hard-coded in the cipher hardware core or
stored on a secure on-board memory module which
the FPGA can access. The FPGA is DPR enabled,
and the facility can be utilized to add or modify the
functionality of the existing circuit on the FPGA.
Only a selected small set of “superusers” (Adminis-
trator) are authorized to perform DPR, by respond-
ing with any one among a selected set of passwords
that the FPGA hardware challenges her to enter
when she attempts DPR. Provided that the supe-
ruser enters the correct password, she is allowed
to transfer the partial reconfiguration bit file to an
input buffer on the FPGA. Now the “superusers”
have two choices:

1. Modify the existing “add-on”(she can reuse the
“add-on” done by any previous DPR proce-
dure by any “superuser”). This facility pro-
vides a great degree of flexibility for evolving
hardware. This will also lead to reduced recon-
figuration time since the new “add-on” is just
an extension of the existing one.

2. Secondly, she has provision to erase some or all
the previous “add-ons” and configure a new
design with new “add-ons”. This feature is
enabled to facilitate the addition of hardware
logic which does not have direct logical relation
with the existing “add-ons”.

Note that in the context of utilizing the services
of the FPGA for encryption, and a superuser is sim-
ilar to any other member of the authorized user
group in the network. A “superuser” may be mali-
cious and may attempt vulnerable hardware upda-
tions via DPR.

The IoT is a dynamic, ever-evolving entity.
Hence, it requires flexibility in both hardware and

software. It is common to have software up-
dates/upgrades for devices connected to the Inter-
net. On the contrary, it is far less common to up-
date or upgrade hardware over a network. How-
ever, with the increasing use of FPGAs in main-
stream computing, and the widespread availabil-
ity of dynamic reconfiguration capabilities of such
hardware, such situations are becoming more com-
mon. As an example, any fielded device can be up-
graded with a new encryption algorithm. The need
might be due to compatibility with new applica-
tions. Considering a cryptographic application, the
existing algorithm may be broken. For example, an
AES algorithm was created when Data Encryption

Standard (DES) algorithm was broken. Similarly,
an AES algorithm may be enhanced using specific
encryption modes such as Cipher Block Chaining
(CBC), Electronic Codebook (ECB), Cipher Feed-
back (CFB), Output Feedback (OFB), and Counter
(CTR) using DPR. When attempting a DPR, the
attacker gets limited access the static design which
is used as a back-door for HTH insertion.

2.5. Exploitation of DPR for Remote HTH Inser-

tion

Although DPR-enabled FPGAs provide us with
a range of options and flexibility due to its abil-
ity to synthesize a wide variety of clocks by recon-
figuring the DCM, they are vulnerable to security
threats. When the FPGA is programmed with CHS
modules that use the clock output of the DCM, a
malicious adversary can reconfigure the DCM to
launch attacks that leak secret information from
cryptographic modules. This is HTH insertion in
essence. We assume that every attempted DPR
is logged on the FPGA, and it is not possible for
a malicious user to make arbitrary modifications
to the existing FPGA hardware without revealing
her identity. However, the user can wait till a pre-
scheduled and preauthorized DPR operation to be
performed, to add to or to modify the existing cir-
cuit on the FPGA, and then, piggyback the ma-
licious component of the bitstream on the benign
component bitstream to be mapped on the FPGA.
The HTH can be remotely triggered using
DPR to maliciously alter the working of the
cryptographic circuit on the fly, without the
need for any dedicated conditional trigger
circuit to be present on the FPGA. This re-
duces the attack overhead, makes the attack
model more practical, efficient and challeng-
ing to debug and defend against [9, 10]. In
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this paper, we focus on two such instances of re-
mote Trojan insertion that remotely configure the
output of the DCM to compromise the security of
cryptographic modules:

• The first category of attacks we focus on in
this paper are clock glitch based fault attacks.
Clock glitches introduce faults in the normal
functioning of the cryptographic core of the
FPGA by causing set-up time violations in
the critical path of the circuit. A number of
low-cost clock glitch based fault attacks have
been demonstrated in cryptographic literature
[15]. Remote DPR, on the other hand, makes
the threat of clock glitch based fault injections
even more potent by allowing the adversary
to simply transmit malicious DPR bitstreams
over a remote connection to dynamically re-
configure the output clock of the DCM. How-
ever, traditional clock glitch based fault injec-
tion techniques are invasive, in the sense that
the adversary must have physical access to the
clock port of the target FPGA [15, 16]. Re-
mote DPR, on the other hand, makes the
threat of clock glitch based fault injec-
tions even more potent by allowing the
adversary to simply transmit malicious
DPR bitstreams over a remote connec-
tion to dynamically reconfigure the out-
put clock of the DCM, without being in
physical proximity of the FPGA being
attacked.

• The second category of threats arises from al-
terations of DCM clock signals that are used
to generate uniformly random distributions by
sampling one or more random signals. The
HTH can maliciously alter the frequency of
the sampling clock signal to bias the resulting
distribution towards a specific value or set of
values. This, in turn, compromises the secu-
rity of one or more cryptographic primitives
(e.g. TRNG) that use this distribution for
their computations.

• The third category of hardware trojan horse
insertion via remote DPR targets a processor
implemented on an FPGA. We implement a
128 bit AES encryption algorithm, in the pro-
cessor. The clock frequency of the processor
is adjustable by remote DPR. We HTH delib-
erately inserts fast clock leading to instruction

Figure 5: Hardware Trojan Insertion on AES Encryption
Algorithm Implemented on an FPGA

skipping attacks there by leaking sensitive in-
formation on the AES Encryption key. We
implement two different methodologies of in-
struction skip, which can lead to the recovery
of AES Key.

• Final text-case of attack targets processor
based implementation of cash machine algo-
rithm. This enables malicious advisory to re-
ceive money or assets from a bank or other
financial institution. This is implemented by
skipping password checking in electronic ma-
chines using remote DPR targeting clocking
circuits to the processor. This kind of attack
particularly targets insecure retail outlets and
cash machines.

In the next sections, we present two practical case
studies to demonstrate how remote DPR capabili-
ties can be leveraged to compromise the security of
applications mapped on an FPGA.

3. Attacks on Cryptographic Primitives
through Remote DPR

3.1. Case Study I: Remote DPR based Fault Attack

on AES-128 Cryptographic Core

The first attack proposed attack targets an AES
encryption circuit running on the FPGA and recov-
ers the secret encryption key with a single remote
fault injection using clock glitches. The second at-
tack targets the TRNG on the FPGA, and signifi-
cantly biases its output distribution, thus compro-
mising its true randomness property.
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Figure 6: Timing diagram for DCM controller operation during Fault Attack on AES-128 encryption circuit using remote DPR.
The red circles indicate AES encryption rounds. CLK AES is the clock to the AES encryption module. Using the mask signal
the fast HTH clock is selected exactly once in the eighth round (out of ten rounds) of AES encryption.

In a practical IoT environment, the FPGA can
be envisaged to be programmed to execute crypto-
graphic algorithms, including symmetric and pub-
lic key encryption algorithms. The current global
standard for symmetric key block ciphers is AES,
which is used to provide bulk data encryption for
several modern day applications. For our first case
study, we program the FPGA with an AES-128 en-
cryption circuit, which in conjunction with the sup-
porting architecture for remote DPR, resides within
the static partition of the FPGA floorplan described
in Figure 1. The AES circuit is implemented in an
iterative fashion with ten rounds, with a nominal
working clock frequency of 100 MHz supplied from
the DCM. Our aim is to recover the AES encryp-
tion key using an efficient fault attack that uses
a single fault injection. For this, we employ the
most efficient Differential Fault Analysis (DFA) at-
tack on AES-128 proposed in the cryptographic lit-
erature [17], that uses only a single pair of faulty
and fault-free ciphertexts. This DFA attack reduces
the search space of the secret key from 2128 to 28.
The attack requires a single byte fault injection at
the start of the eighth round MixColumns opera-
tion of AES. This attack is extremely efficient and
requires less than 10 minutes on a standard desk-
top PC. For the desired single byte fault injection,
we use the remote DPR capability of the FPGA to
transfer a malicious bitstream that reconfigures the
output clock of the DCM and causes set-up time
violations along the critical path of the deployed
AES encryption circuit. The effect of the malicious
bitstream on the working of the DCM controller
is demonstrated in Figure 6. We assume that the
adversary can distinguish between AES encryption

rounds, and hence is able to switch the clock fre-
quency to create a glitch at the appropriate round.
The first seven rounds of AES are configured to run
at 100 MHz using the first DPR at the DCM end.
For this, the D and M values are each set to the
nominal value 2 (as per equation. (1)). At the be-
ginning of the eighth round, the DCM is reset and
reconfigured to generate a 400 MHz clock signal by
a second DPR at the DCM end. The correspond-
ing design parameters D and M used are 1 and 4
respectively. The DCM is allowed to output this
clock frequency for some cycles, after which it is
brought back to 100 MHz using another DPR at
the DCM end.

The DCM circuitry generates fast clock
(400MHz) for a few clock cycles. We require
a single fast clock cycle at the start of eighth round
encryption to introduce a set up time violation.
Generating a fast clock for exactly one round
using DCM is non-trivial, and is accomplished by
using a mask logic to filter out the unwanted fast
clock cycles. The clock to the AES circuitry is
provided from the output of a mask logic filter
whose input is the output of DCM circuitry. A
mask logic filter selects the fast clock for a single
round (eighth round). This allows us to generate a
clock pattern in which only the eighth round clock
is fast. This introduces the fault in the eighth
round via set-up time violations [18]. Once the
fault is injected, the DCM is brought back to its
original output frequency generation configuration,
and the AES encryption completes (after the tenth
round) with a faulty output ciphertext, as desired
by an adversary. It is desirable to an adversary
that no user except her, in the network would
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Figure 7: Hardware trojan insertion on single phase BFT
TRNG implemented on an FPGA

be able to deduce the secret key from the faulty
ciphertext. The faulty ciphertext output is garbled
using the output values obtained from a “Linear
Feedback Shift Register” (LFSR) circuit added as
a part of the HTH in the dynamic partition. The
adversary, knowing the initial configuration of the
LFSR could easily recover the key. The design
implemented on the FPGA is depicted in Figure 5.
The attack requires a one-time transfer of
a partial reconfiguration file to the DCM
controller of the FPGA using the remote
connection, which in turn autonomously
initiates three DPR operations via the
DRP ports of the DCM to reconfigure the
clock signal output to the AES encryption
module, as described in Figure 6. This
makes the attack extremely potent.

3.2. Case Study II: Remote DPR based Attack on

TRNG using Beat Frequency Detection

A TRNG is a hardware module that gener-
ates statistically independent random number sets
by leveraging the inherent randomness in physical
sources. A good TRNG must possess two major
cryptographic properties - (a) an adversary should
not be able to predict its response, based on knowl-
edge of an unlimited number of previously gener-
ated bits, and (b) an adversary should not be able
to bias its response towards a specific value (0 or
1), i.e., in an ideal TRNG, 0s and 1s should be
equiprobable in the output bitstream.
In our case study, we assume that the target

FPGA has a ring oscillator based TRNG that
uses beat frequency detection mechanism to ex-
tract noise for random number generation (BFT
TRNG) [19]. We briefly describe its working here.
Assume that the target TRNG circuit consists of
two quasi-identical ring oscillators, namely ROSCA

(time period T1) and ROSCB (time period T2),
with similar physical construction and placement.

The difference in frequency of oscillation between
the two oscillators at each time instance, result-
ing from random process variations, is sampled and
recorded using a D flip-flop (DFF). As a result, the
DFF outputs 1 at random beat frequency intervals,
corresponding to specific capture events. The out-
put clock signal of ROSCB drives a binary counter,
whose output ramps up to random values before
being reset each time the DFF outputs 1. The out-
put of the counter is sampled by a sampling clock
before it reaches its maximum value. The sampled
response is then serialized to obtain the desired ran-
dom bitstream. For more details on the working of
the TRNG circuit, please refer to [19].
We use the remote DPR capability of the

FPGA to design an HTH that biases the dis-
tribution of the TRNG output towards pro-
ducing 0. Initially, the device is configured to
operate at slower sampling clock (golden sampling
clock), which produces a sampling trigger at the n-
th n = 162 in our experiment) cycle of golden sam-
pling clock. This produces a random distribution
with mean m (m = 170 in our experiment). The
counter output is sampled using a sampling trigger
signal and is serialized to be used as a random bit-
stream. The design implemented on the FPGA is
depicted in Figure 7.
The inserted HTH generates a patterned sam-

pling clock which is superimposed on the DCM
circuitry required to synthesize the clock for sam-
pling the TRNG counter output. The DCM cir-
cuit is controlled using a controller module that is
implanted in the dynamic part of the circuit uti-
lizing the remote DPR facility of the FPGA, dur-
ing an authorized DPR process. The HTH uses
the remote DPR capability to configure the DCM
controller using a malicious bitstream. The DCM
controller, in turn, generates control signals that
configure the DCM dynamically to introduce a fast
sampling clock. The fast HTH sampling clock gen-
erates a sampling trigger in lesser time than that
would be if run by a golden sampling clock. As a
result, the TRNG counter gets hardly any opportu-
nity to increment before being reset by the sampling
trigger signal. Consequently, the TRNG response is
biased towards lower counter values, which in turn
biases the output bitstream towards 0.
The attack requires a one-time transfer of

a partial reconfiguration file to the DCM
controller of the FPGA using the remote
connection, which in turn autonomously ini-
tiates a DPR operation via the DRP ports
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Figure 8: Timing diagram for DCM controller operations during the HTH attack on TRNG using remote DPR. The red circles
indicate cycles of DCM output clock signals. Exactly at the 162th cycle of the DCM clock, a sampling trigger is generated to
sample the counter output.

of the DCM whenever is biasing is desired
to reconfigure the clock signal output to the
TRNG sampler. The overall attack is practi-
cal and relatively easy to launch and exploits
the remote DPR capability of the FPGA
to remotely trigger the HTH. Since the sam-
pling clock generator is an indispensable part of the
TRNG architecture, superimposing the proposed
HTH on this sampling clock management circuitry
reduces the hardware overhead associated with the
HTH design. The working of the HTH, along with
other control signals required to remotely activate
the DPR in the DCM module, is pictorially de-
picted in Figure 8.

4. Attacks on Processor through Remote
DPR

Cryptography is the fundamental component for
securing the Internet traffic, particularly in an IoT
environment. Most of the cryptographic algorithms
demand enormous processing power. This intro-
duces a bottleneck in high-speed network appli-
cations. To fully utilize the network bandwidth,
the cryptographic algorithm implementation needs
to achieve high processing rate. Additionally, IoT
applications operate in an ever changing environ-
ment. To incorporate the modifications in crypto-
graphic algorithms and standards, their implemen-
tation must be upgradable in-field, contrarily, off-
line upgrades results in excessive cost. A solution
to this problem would be implementations of secure
features in an adaptive processor that can provide
software-like flexibility with hardware-like perfor-
mance, where FPGA-based implementation is an

excellent choice. This section is intended to demon-
strate practical attacks on applications mapped on
a processor implementation on an FPGA. The idea
is to exploit DPR capability of FPGA devices to
recover secret information from a cryptographic en-
cryption algorithm implemented on a processor.
We also target to weaken the security of a cash ma-
chine scheme implemented on the processor. Both
of these attacks are based on instruction skipping
and pose a severe threat to the security of applica-
tions mapped on an FPGA-based processor. The
attacks are demonstrated on a Xilinx PicoBlaze

Processor [20]. The concept works fine for other
processor implementation on the FPGA also. Pi-
coBlaze is an 8-bit microcontroller, which requires
two clock cycles per instruction execution.

4.1. Case Study III: Remote DPR based Attacks

on Processor Implementation of AES-128 En-

cryption Algorithm

The AES encryption algorithm is implemented
on a Xilinx PicoBlaze processor using the following
subroutines and instruction:

1. LOADKEY (A) (loads the AES 128-bit key
to the processor state matrix position-1)
(Scratchpad RAM for PicoBlaze processor),

2. LOADPLAINTEXT (B) (reads the AES 128-
bit plaintext to the processor state matrix
position-2),

3. XORROUNDKEY (C) (performs bitwise XOR
operation on contents in processor state matrix
position-1 and position -2 and stores the result
in state matrix position-2),
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Figure 9: Hardware trojan insertion on AES encryption al-
gorithm implemented on a processor.

4. WRITEOUTPORT (K) (writes the content of
processor state matrix position-2 to the output
port of the processor),

5. SUBBYTES (E) does the substitution opera-
tion,

6. SHIFTROWS (F) cyclically shifts the bytes in
each row by a certain offset,

7. MIXCOLUMNS (G) together with F provides
diffusion in the system,

8. NEXTROUNDKEY (H) derives a sub key in
the system,

9. LOAD Sx,9 (D) (Load register with value 9 ),

10. SUB Sx,1 (I) (Subtract 1 from the content of

Sx) and

11. JUMP NZ Round (J) (To incorporate round
loop).

The flow of AES encryption implementation on the
processor is depicted in Figure 9.

The attack is implemented by following the strat-
egy described below: Skip all the instruction that
follow the first “CALL XORROUNDKEY” instruc-
tion, except the “CALL WRITEOUTPORT” in-
struction. This requires 12 instructions to be
skipped and requires 24 consecutive fast clocks.

This method is straightforward as the HTH op-
erates on consecutive sets of fast clock. This re-
quires only a single DPR to induce a fast clock of
24 clock cycles and another DPR to bring the sys-
tem back to the original operating frequency of 100
MHz. The key can be trivially recovered using a
single “bitwise XOR” operation between the cipher-
text and the plaintext. This methodology produces
the faulty ciphertext with a small number of clock
cycles (only a few instruction is actually executed
by the encryption algorithm).This might cause sus-
picions from outside and hence we introduce the
necessary delay before delivering the cipher text.
It is desirable to an adversary that no user except
her, in the network would be able to deduce the
secret key from the faulty ciphertext. The faulty
ciphertext output is garbled using the output val-
ues obtained from a “Linear Feedback Shift Reg-
ister” (LFSR) circuit added as a part of the HTH
in the dynamic partition. The adversary, knowing
the initial configuration of the LFSR could easily
recover the key. The control signals required for
generating the fast clocks is provided by the mali-
cious DCM controller residing in the dynamic par-
tition of the device. The whole circuit arrangement
is shown in Figure 9. The working of HTH along
with other control signals required to remotely ac-
tivate the DPR in the DCM module, is pictorially
depicted in Figure 10. The attack requires an
one-time transfer of a partial reconfiguration
file to reconfigure the DCM controller, LFSR
and the Delay logic residing in the dynamic
partition of the design of the FPGA using
the remote connection, which in turn au-
tonomously initiates three DPR operations
via the DRP ports of the DCM to reconfig-
ure the clock signal output to the processor,
as described in Figure 10. This makes the
attack extremely potent.

11



Figure 10: Timing diagram for DCM controller operation during instruction skipping attack on AES-128 encryption algorithm
implemented on a PicoBlaze processor using remote DPR. The red circles indicate AES algorithm subroutines. CLK PRO is
the clock to the processor module.

Figure 11: Hardware trojan insertion on cash machine
scheme implemented on a processor.

4.2. Case Study IV: Remote DPR based Attacks

on Processor Implementation of Cash Machine

Scheme

The cash machine scheme is implemented on a
processor using the following subroutines and in-
structions: CALL CARD NUM (A) reads the num-
ber of the inserted bank cash machine card. CALL
PASSWORD (B) reads the password correspond-
ing to the inserted card from the secure password
storage memory and stores the details in processor
state matrix position-1. CALL IO PW (C) reads
the password entered by the user and stores the
details in processor state matrix position-2. COM-

PARE (D) subroutine compares the result stored in
position-1 and position-2 of the scratch pad mem-
ory. This operation effects the zero flag of the
processor. The cash machine scheme continues to
the transaction stages only if the above instruc-
tion is successful. This is tested using the JUMP
instruction (E). Once successful, the subroutine
ATM OPP is performed (F), which leads to with-
drawal of the desired amount of cash from the ma-
chine. This flow is depicted in Figure 11.

The cash machine scheme can be attacked by
using a single fast clock targeting the instruction
JUMP (E). The clock to the processor is provided
from the output of a mask logic filter whose in-
put is the output of DCM DCM circuitry. A mask
logic filter selects the fast clock for two rounds .
Since generating a fast clock for exactly two cy-
cle is nontrivial, we use a mask logic filter to filter
out unwanted fast clock cycles. This generates a
patterned clock in which exactly the clock corre-
sponding to instruction “E” is fast, leading to the
corresponding instruction skip. Once the fast clock
is induced, the DCM is brought back to its original
output frequency of 100 MHz using another DPR.
The attack requires a one-time transfer of a
partial reconfiguration file to configure the
DCM controller and the mask logic. The
DCM controller in turn autonomously initi-
ates three DPR operations via DPR ports
of the DCM to reconfigure the clock signal
output to the processor, as described in Fig-
ure 12.
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Figure 12: Timing diagram for DCM controller operation during instruction skipping attack on a cash machine scheme imple-
mented on a PicoBlaze processor using remote DPR. The red circles indicate cash machine scheme subroutines. CLK PRO is
the clock to the processor module.

5. Experimental Study and Results

We first describe the experimental set-up to real-
ize the attacks on the cryptographic cores and the
processor. This is followed by a presentation of ex-
perimental results illustrating the efficiency of the
proposed attack methods.

5.1. Experimental Setup

The test case designs for our experiments, includ-
ing the cryptographic primitives and the HTH, were
described in Verilog, synthesized and implemented
using Xilinx ISE 14.7 for the Xilinx XUP Virtex-

5-LX110T FPGA target platform, and were simu-
lated using Xilinx Isim. For generating the DPR
bitstreams, we used the difference based methodol-
ogy proposed in [21, 22] using Xilinx FPGA Editor

software to reduce transmission overhead over the
Ethernet, and since it does not require any spe-
cial CAD tool design license. Remote access capa-
bilities for the FPGA were incorporated by appro-
priately modifying the SIRC framework from Mi-

crosoft [13]. We monitored the power dissipation of
the circuit using the Xilinx XPower Analyzer tool,
while delay estimation was accomplished using Xil-

inx Timing Analyzer. The computations for recov-
ering the secret key were performed on a PC with
2 GB of main memory and a 2 GHz CPU.

5.2. Attack on AES Encryption Circuit

An iterative implementation of AES-128 with ten
rounds per encryption. The maximum operating
frequency for the standalone AES implementation

was found to be 100 MHz. Any value higher than
this is expected to produce a faulty ciphertext.
In our experiments, the fast clock frequency used
to introduce glitches via setup time violation was
400 MHz, using the DCM parameters M = 4 and
D = 1. In order to ensure that the fault spreads
to all bytes of the final AES state, the clock glitch
was remotely triggered at the beginning of the 8-th
encryption round. The remote triggering was done
using malicious DPR bitstream transmitted to the
DCM controller via Ethernet, forcing it, in turn,
to generate control signals to the DRP ports of the
DCM, to switch to the faster clock, and then return
back to the original clock frequency.

5.3. Attack on TRNG

The ring oscillators for the TRNG module were
designed as “hard macros”, with a target (nomi-
nal) time period of 38.00 ns. The actual time pe-
riods were observed to be T1 = 37.9256 ns and
T2 = 38.0000 ns respectively. The frequency differ-
ence of 0.2959% between the two oscillators was due
to process variation effects. The maximum value
that the counter could reach was 255 (for an 8-
bit counter), while the golden sampling clock fre-
quency was set such that the sampled value was
around 170 (sampling value). The fast HTH clock
was designed according to the number and position
of bits of the TRNG output that were to be bi-
ased to 0. For instance, suppose that we aim to
bias the four MSB bits of the TRNG output to 0
in one random number generation cycle. The four
LSB bits of the counter, on the other hand, are ran-
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dom. The maximum possible value of the counter,
in this case, is 15, which we refer to as countmax.
Let T = (sampling value)∗T2, where T is the total
time required to generate the sampling trigger when
the counter reaches the desired sampling value. For
our TRNG design, we have T = 6460 ns. Let S

be the total number of cycles of the golden sam-
pling clock (Tg=25 MHz, see Figure 8, M = 1 and
D = 4) required to sample at this rate. Then, we
have S = T

Tg

(∼ 162). Finally, if Tfast is the in-

fected sampling clock triggered by the HTH with
frequency Ffast, the following relation must hold:

Tfast ≤

⌊

(countmax) ∗ T2

S

⌋

(2)

For our experiments, we intended to have Tfast ≤

3 ns (conversely, Ffast ≥ 333.333 MHz). So we
set Ffast to be 400 MHz, corresponding to M = 4
and D = 1. This leads to a biased distribution for
the four MSB bits of the TRNG output towards 0.
Following similar calculations, increasing the clock
frequency even further to 500 MHz using remote
dynamic controls to the DCM biased each bit of
the entire TRNG output towards 0.

5.4. Attack on Processor based AES Encryption Al-

gorithm

We used a Xilinx PicoBlaze processor to pro-
gram an iterative implementation of AES-128 with
ten rounds per encryption. PicoBlaze processor re-
quires two clock cycles for an instruction execution.
The processor works correctly for a clock frequency
of 100 MHz. Processing speed higher than this is
expected to produce a skip in instruction execution.
In our experiments, the fast clock frequency used to
introduce instruction skip was 800 MHz, using the
DCM parameters M = 8 and D = 1. The DCM
controller was designed to trigger fast clocks at the
start of instructions to be skipped. The malicious
DPR bitstream was transmitted to the DCM con-
troller via Ethernet, forcing it, in turn, to generate
control signals to the DRP ports of the DCM, to
switch to the faster clock, and then return back to
the original clock frequency. The attack is feasi-
ble by a distributed fast clocks as well as consecu-
tive fast clocks. Since PicoBlaze is an 8-bit micro
controller (cipher text is output in 16 times, 8-bits
each), an 8-bit LFSR is used to scramble the resul-
tant faulty cipher text.

5.5. Attack on Processor based Cash Machine Al-

gorithm

The same Xilinx PicoBlaze processor to program
the cash machine algorithm. The attack was rela-
tively simple to launch as it requires only two cy-
cles of the fast clock. The attack requires only a
single instruction skip. In our experiments, the fast
clock frequency used to introduce instruction skip
was 800 MHz, using the DCM parameters M = 8
and D = 1. The DCM controller was designed to
trigger fast clocks at the start of instructions to be
skipped. The malicious DPR bitstream was trans-
mitted to the DCM controller via Ethernet, forcing
it, in turn, to generate control signals to the DRP
ports of the DCM, to switch to the faster clock, and
then return back to the original clock frequency.

5.6. Effectiveness of the Difference based DPR

Methodology

This ensures that the reconfiguration bitstream
files have small sizes, that can be transmitted easily
over a remote network with very little cost. Table 1
demonstrates that the required partial bitstream
sizes for our attacks are relatively very small. We
assume that the FPGA dynamic partition is blank
before the first partial reconfiguration is performed.
Hence, to configure a new “add-on” it is required
to transfer PR bitstreams to the FPGA (Blank-to-
P1). In order to remove a particular “add-on”, it
is required to transfer bitstreams which erase the
“add-on” logic (P1-to-Blank). The ICAP primitive
of the targeted FPGA board is configured to run in
an 8-bit configuration at a clock frequency of 100
MHz. This ensures that DPR of the “add-on” DCM
controller can be performed efficiently in order of
micro-seconds time.

5.7. Results of Remote Attack on AES Core using

Clock Glitches

Table 2 summarizes the percentage increase in
the total on-chip power consumption of the AES de-
sign (Case Study I), before and after HTH insertion,
while Table 3 (Case Study I) compares the critical
path delays before and after HTH insertion in the
dynamic partition. Also, Table 4 (Case Study I)
compares the hardware overhead for the golden and
the HTH-infected AES designs. From these results,
it is clear that the HTH insertion can be realized us-
ing minimal hardware overhead, and a negligible ef-
fect on the power consumption as well as the circuit
delay. Also, no significant variation was observed
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Table 1: Partial Reconfiguration File Size
Test Case Attack Complete Partial Reconfiguration Partial Reconfiguration

Bitstream Size (kB) File (P1-to-Blank) (kB) (Blank-to-P1) File (kB)
AES Cryptographic Core 3890.016 44.368 44.368

TRNG 3890.017 27.681 27.681
Processor based AES Algorithm 3889.964 65.959 65.959

Processor based Cash Machine Algorithm 3889.964 59.275 59.275

Table 2: Power Overhead from HTH Insertion
Design Golden Reference (Blank Trojan Infected Increase in

Dynamic partition)(W) Circuit(W) Power w.r.t.Golden (%)
AES Cryptographic Core 3.571 3.712 3.9485

TRNG 3.628 3.628 0.00
Processor based AES Algorithm 3.799 3.892 3.3226

Processor based Cash Machine Algorithm 3.371 3.454 2.4622

in the simulated power traces obtained from the
Trojan-free and the Trojan-infected designs. This
establishes the fact that our proposed attack is in-
deed practical, and can be used to obtain the secret
key of AES remotely in less than ten minutes.

5.8. Results of Remote Attack on TRNG using a

Faster Sampling Clock

Our remote attack on the 8-bit TRNG module
involves biasing distribution of the output bits. In
particular, we performed an attack that biased the
four MSB bits of the TRNG output to 0, while
the four LSB bits were allowed to take any random
value. The golden sampling clock frequency Fg for
the TRNG was set such that the output counter
value was around 170, while in the biased scenario
the clock frequency was so modified to Ffast as to
allow a maximum counter value 15. For our exper-
iments, we set Ffast to be 400 MHz (corresponding
to M = 4 and D = 1 from equation (1)). This
allowed us to bias distribution for the four MSB
bits of the TRNG output towards 0. Increasing
the clock frequency even further to 500 MHz bi-
ased each bit of the entire TRNG output towards
0. The faster sampling clock frequencies were ob-
tained by remote DPR of the DCM controller using
maliciously transferred bit streams.
Table 2 (Case Study II) shows the percentage in-

crease in the total on-chip power consumption of
the TRNG design before and after Trojan inser-
tion, while Table 4 (Case Study II) compares the
hardware overheads for the golden and the HTH-
infected designs. From these results, it is clear that
the HTH insertion can be realized using minimal
hardware overhead. The probability of occurrence
of a 0 at any of the output bit positions is expected
to depend on the number of instances of random

number generation cycle that are run using the fast
sampling clock. This was precisely observed in our
experimental results, where we were able to bias
the TRNG response to 0 at predefined positions
using high-frequency sampling clock. At these po-
sitions, the probability of zeros (P (0)) in the gen-
erated TRNG response was close to 0.75, which is
higher than the expected ideal value of 0.5 for an
ideal TRNG.

We also performed NIST statistical tests [23] on
the output samples produced after the attacks. We
collected 20 million samples from the golden TRNG
design, and the infected TRNG design. For a block
size of 100, the golden reference design passed all
the NIST tests (P-value χ2 > 0.01 and Proportion
≥ 0.96), whereas the infected design failed all NIST
tests.

5.9. Results of Remote Attack on processor based

implementation of AES Encryption Algorithm

Table 2 summarizes the percentage increase in
the total on-chip power consumption of the proces-
sor based AES encryption algorithm (Case Study
III), before and after HTH insertion, while Ta-
ble 3 (Case Study III) compares the critical path de-
lays before and after HTH insertion in the dynamic
partition. Also, Table 4 (Case Study III) compares
the hardware overhead for the golden and the HTH-
infected AES designs. From these results, it is clear
that the HTH insertion can be realized using min-
imal hardware overhead, and a negligible effect on
the power consumption as well as the circuit delay.
Also, no significant variation was observed in the
simulated power traces obtained from the Trojan-
free and the Trojan-infected designs. This estab-
lishes the fact that our proposed attack is indeed
practical, and can be used to obtain the secret key
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Table 3: Timing Overhead from HTH Insertion (Minimum Period)
Design Design Design Increase in Critical

Without Trojan (ns) With Trojan (ns) Path Delay (%)
AES Cryptographic Core 10.194 10.194 0.00

TRNG 7.275 7.275 0.00
Processor based AES Algorithm 11.684 11.684 0.00

Processor based Cash Machine Algorithm 11.699 11.699 0.00

Table 4: Hardware Overhead from HTH Insertion
Design Device Golden Trojan Hardware Overhead

Utilization Reference Design Infected Design w.r.t Golden (%)
Slice 3386 3403 0.5021

AES Cryptographic Core SliceReg 5217 5239 0.4217
LUTs 7988 8019 0.3881
Slice 2342 2348 0.2562

TRNG SliceReg 4214 4227 0.3085
LUTs 6446 6454 0.1241
Slice 2343 2380 1.00

Processor based AES Algorithm SliceReg 4153 4326 4.165
LUTs 6591 6689 1.486
Slice 2771 2792 0.7578

Processor based Cash Machine Algorithm SliceReg 4271 4302 0.7258
LUTs 6591 6645 0.8193

of AES remotely using a single bitwise XOR oper-
ation.

5.10. Results of Remote Attack on processor based

implementation of Cash Machine Algorithm

Table 2 summarizes the percentage increase in
the total on-chip power consumption of the proces-
sor based AES encryption algorithm (Case Study
IV), before and after HTH insertion, while Ta-
ble 3 (Case Study IV) compares the critical path de-
lays before and after HTH insertion in the dynamic
partition. Also, Table 4 (Case Study IV) compares
the hardware overhead for the golden and the HTH-
infected AES designs. From these results, it is clear
that the HTH imposes a negligible impact on every
measurable circuit parameter. The HTHs do not
show any impact on delay, even the latest reported
delay based trojan detection methodology [24, 25]
fails in this case.

6. Countermeasures against the proposed
attack

Although remote hardware updates are vital to
IoT applications, as demonstrated in this work,
straightforward enabling of DPR on DPR-capable
FPGAs is a double-edged sword, with severe se-
curity vulnerabilities as they are prone to serious
malicious hardware updations.
On closely analyzing the proposed attacks, it

should be clear that the targeted IoT architecture

requires two layers of security, one at the bitstream
insertion level and second at the CMT end. Ma-
licious bitstream insertions can be avoided if DPR
is permitted restrictively in the system. For this,
one possible solution is to pre-store signatures (e.g.
cryptographic hashes) of possible hardware modifi-
cations to the system after successful passing of the
design through HTH validations mechanisms. Any
attempted DPR is allowed to modify the hardware
if the signature of the partial bitstream matches
with any of the pre-stored values [9].
To prevent attacks via fast HTH clock insertions

by DPR at the CMT end, pre-storing clock model-
ing parameters based on the analysis of maximum
and minimum operating conditions of the logic re-
siding in the static partition of the design might
be adopted. For example, only restrictive modi-
fication of M and D values for the DCM can be
allowed. Applications targeting restricted mode of
DPRs using CMTs has been reported in [26].
However, although attaining security of IoT de-

vices and embedded security applications is ex-
tremely important, compromising remote DPR ca-
pabilities by only restrictively enabling DPR, the
system may not be a wise choice, as this will not al-
low the capability of remote DPR to be harnessed to
its fullest extent. To avoid DPR being exploited by
attacks, and to permit its advantages to the fullest
possible extent, careful protocol design to trans-
fer only trusted DPR bitstreams to the FPGA is
needed as well. A security protocol for unrestricted
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DPR usingPhysical Unclonable Functions (PUFs)
for FPGA authentication and bitstream validation
is a wise choice [27]. Our future research efforts
would be directed towards designing a secure IoT
protocol that permits unrestricted DPR to be per-
formed on the system. The technique proposed in
[28] for integrity protection and authentication of
DPR bitstreams can also be adopted. The “Xil-
inx controller for encrypted partial reconfiguration”
can be used to prevent arbitrary unauthorized mod-
ifications to the bitsreams [29].

Recent researches on HTH insertions via DPR
points out the inevitable need of post-deployment
anomaly detection for circuits residing in the dy-
namic partitions of the FPGA [9, 10, 11]. For
this, it is required to incorporate Design for Testa-

bility (DFT) in the dynamic partition. One way
to achieve this is to modulate the single large dy-
namic partition into reasonable sized smaller par-
titions. Access to these small sized partitions from
the static testing circuit in the FPGA shall be al-
lowed using bus-macros or Flip-flops. We’ll be look-
ing for the design of secure dynamically reconfig-
urable architecture in our future works.

The attack described in Section 3.1, falls under
the category of DFA attacks, where a single byte
fault is induced to reduce the AES Key. DFA
countermeasure is an excellent choice for attacks of
this nature particularly, Concurrent Error Detec-
tion [30]. Higher-order masking schemes, detection
and infection countermeasures, and their combina-
tions are also other choices [31]. A survey on exist-
ing DFA countermeasures is presented in [32] with
insight into suitable DFA prevention techniques.

The attack described in Section 3.2 is possible
due to the week design of the TRNG. This attack
emphasis the need of TRNG designs with Built-In
Tolerance or self-repair capabilities against HTH
Attacks. Biasing effects can be minimized using
post processing stage, for example in [33], the au-
thors come up with the use of resilient functions to
withstand attacks on TRNG.

Section 4 describes attacks on processor target-
ing instruction skipping operation. Integrity checks
can be adopted to achieve code integrity [34, 35]
in secure embedded processors. Recovery schemes
based on checkpoint and rollbacks [36, 37] also pre-
vents instruction skipping attacks, but have a high
overhead in terms of storage space.

7. Conclusions

This work has demonstrated severe threats due
to in-field remote HTH insertions to FPGAs, that
have the potential to compromise the system secu-
rity of entire IoT networks. We have demonstrated
the leakage of cryptographic keys, biasing the prob-
ability of 0s and 1s in the output bitstream of a
TRNG, and threats to processor implementations
of secure applications. Cyber threat attacks have
shown themselves to be capable of accommodating
rapid technological changes, taking full advantage
of the present of internet enabled technologies to de-
velop new and powerful attack vectors. Knowledge
of the threats, together with appropriate counter-
measures, provides essential information for the de-
sign of secure IoT infrastructure that enables IoT to
be benefited by remote hardware update method-
ology. Identifying the threats that are specific to
the particular systems with DPR-capable FPGAs,
prioritizing protection against them, and effective
implementation of the protection schemes is very
important and will require considerable research ef-
fort in future.
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D. Mukhopadhyay, S. Gören, Fault Attack on AES via
Hardware Trojan Insertion by Dynamic Partial Recon-
figuration of FPGA over Ethernet, in: 9th Workshop
on Embedded Systems Security (WESS 2014), 2014.

[10] A. P. Johnson, R. S. Chakraborty, D. Mukhopadhyay, A
Novel Attack on a FPGA based True Random Number
Generator, in: 10th Workshop on Embedded Systems
Security (WESS 2015), 2015.

[11] A. P. Johnson, S. Patranabis, R. S. Chakraborty,
D. Mukhopadhyay, Remote Dynamic Clock Reconfig-
uration Based Attacks on Internet of Things Applica-
tions, in: 2016 Euromicro Conference on Digital System
Design (DSD), 2016, pp. 431–438.

[12] Xilinx Inc, [Online]. Available: http://www.xilinx
.com, Virtex-5 Libraries Guide for HDL Designs UG621
(July 2010).

[13] K. Eguro, SIRC: An Extensible Reconfigurable Com-
puting Communication API, in: IEEE Symposium
on Field-Programmable Custom Computing Machines
(short paper), 2010.

[14] Xilinx Inc, [Online]. Available: http://www.xilinx.com,
Xilinx UltraScale MPSoC Architecture, accessed: 2015-
04-01 (February 2014).

[15] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall,
C. Whelan, The Sorcerers Apprentice Guide to Fault
Attacks, Proceedings of the IEEE 94 (2) (2006) 370–
382.

[16] T. Fukunaga, J. Takahashi, Practical fault attack on
a cryptographic lsi with iso/iec 18033-3 block ciphers,
in: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2009 Workshop on, IEEE, 2009, pp. 84–92.

[17] M. Tunstal, D. Mukhopadhyay, S. Ali, Differential Fault
Analysis of the Advanced Encryption. Standard using a
Single Fault, in: Information Security Theory and Prac-
tice. Security and Privacy of Mobile Devices in Wireless
Communication, Springer, 2011, pp. 224–233.

[18] N. Selmane, S. Guilley, J.-L. Danger, Practical setup
time violation attacks on AES, in: Dependable Com-
puting Conference, 2008. EDCC 2008. Seventh Euro-
pean, IEEE, 2008, pp. 91–96.

[19] Q. Tang, B. Kim, Y. Lao, K. Parhi, C. Kim, True Ran-
dom Number Generator Circuits Based on Single- and
Multi-Phase Beat Frequency Detection, in: Custom In-
tegrated Circuits Conference (CICC), 2014 IEEE Pro-
ceedings of the, 2014, pp. 1–4.

[20] Xilinx Inc, [Online]. Available: http://www.xilinx.com,
PicoBlaze 8-bit Embedded Microcontroller User Guide
UG 129 (v2.1), accessed: 2016-11-23 (June 2011).

[21] S. Gören, O. Ozkurt, A. Yildiza, H. F. Ugurdag,
R. S. Chakraborty, D. Mukhopadhyay, Partial Bit-
stream Protection for Low-cost FPGAs with Physical
Unclonable Function, Obfuscation, and Dynamic Par-
tial Self Reconfiguration, Elsevier, 2012.
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