
Fault-tolerant Learning in Spiking Astrocyte-Neural
Networks on FPGAs

Anju P. Johnson†, Junxiu Liu*, Alan G. Millard†, Shvan Karim*, Andy M. Tyrrell†,
Jim Harkin*, Jon Timmis†, Liam McDaid* and David M. Halliday†

†Department of Electronic Engineering, University of York, York YO10 5DD, UK
∗School of Computing and Intelligent Systems, Ulster University, Derry BT48 7JL, UK
Email: {anju.johnson, alan.millard, andy.tyrrell, jon.timmis, david.halliday}@york.ac.uk

Email: {j.liu1@, haji karim-s@email., jg.harkin@, lj.mcdaid@}ulster.ac.uk

Abstract—The paper presents a neuromorphic system imple-
mented on a Field Programmable Gate Array (FPGA) device
establishing fault tolerance using a learning method, which is a
combination of the Spike-Timing-Dependent Plasticity (STDP)
and Bienenstock, Cooper, and Munro (BCM) learning rules.
The rule modulates the synaptic plasticity level by shifting the
plasticity window, associated with STDP, up/down the vertical
axis as a function of postsynaptic neural activity. Specifically when
neurons are inactive, either early on in the normal learning phase
or when a fault occurs, the window is shifted up the vertical axis
(open), leading to an increase in firing rate of the postsynaptic
neuron. As learning progresses, the plasticity window moves down
the vertical axis until the desired postsynaptic neuron firing rate
is established. Experimental results are presented to show the
effectiveness of proposed approach in establishing fault tolerance.
The system can maintain the network performance with at least
one nonfaulty synapse. Finally, we discuss a robotic application
utilizing the proposed architecture.

Keywords—Neuromorphic Computing, Fault Tolerance, Self-
Repair, Spiking Neural Network, Astrocyte, Field Programmable
Gate Array, Bio-inspired Engineering.

I. INTRODUCTION

Neuromorphic computation is an emerging research do-
main, which derives inspiration from the architecture of ner-
vous systems of living beings to solve complex tasks. Spiking
neurons are core components of many computational models of
the brain that aim to improve understanding of brain function.
Although neuromorphic systems based on Very Large Scale
Integration (VLSI) architecture were introduced in the late
1980s [1], use of FPGAs in the design of spiking neuromorphic
architectures started to be used over the last ten years [2].
In Spiking Neural Networks (SNNs), communication and
computation happen by an exchange of spatiotemporal patterns
encoded as spikes as in biological neurons. Astrocytes have
been shown to coexist with neurons [3] where these cells
communicate with synapses and neurons, thereby regulating
synaptic activity [4]. The astrocyte cells together with spiking
neurons form a Spiking Astrocyte-Neural Network (SANN)
with a distributed and fine-grained self-repair capability.

Neural activity levels in the nervous system rely on various
plasticity mechanisms, environmental variations and develop-
mental changes. Synaptic plasticity is a mechanism used by
neurons to counteract excessive excitation or inhibition by
adjusting synaptic strengths [5], [6]. In this work, we propose
such a synaptic plasticity mechanism in hardware where the

activity of a post synaptic neuron is used to modify synaptic
weights to overcome faults in the system through learning
mechanisms.

Hebbian learning is a synaptic plasticity rule where a
synapse between two neurons is strengthened when its pre and
post synaptic neurons have highly correlated outputs. Spike
Timing Dependent Plasticity (STDP) is an asymmetric form
of Hebbian learning induced by tight temporal correlations
between the presynaptic and postsynaptic neuron spikes [7],
[8]. The Bienenstock, Cooper, and Munro (BCM) synaptic
modification rule modulates the postsynaptic activity if it
deviates from the required response [9], [10]. In this paper, we
use a self-repairing learning rule [11] that uses evidence [12] to
explain how the STDP and BCM learning rules co-exist to give
a learning function that is under the control of postsynaptic
neuron activity.

When faults occur in the pathways between neurons the
postsynaptic neurons can fall silent. Silent/near silent neuron
presents a weak node in the system. This issue might be due
to hardware failures in the system. The proposed work is a
solution for faults leading to failures in the interconnections
between the neurons. These may be sensor failures, SEUs,
stuck-at fault, interconnect fracture, noise, etc. We define repair
as the ability of the system to restore firing rates through
synaptic weight modulations regulated by learning rules.

To summarize, this paper consists of the following con-
tributions: Firstly, we propose a novel learning rule utilizing
STDP and BCM rules, implemented on an FPGA. Secondly,
an efficient fault tolerance is demonstrated on the proposed
architecture, showing repair capability if at least one healthy
synapse exists in the system. Finally, we use the strengths of
biological SANN systems with their parallel processing and
learning capabilities to solve a real world task.

The rest of the paper is organized as follows. Section II
describes the biological background of the self-repairing learn-
ing rule. Section III presents a hardware implementation of the
proposed self-repair learning methodology. In section IV, we
analyze the repair capability of the proposed system imple-
mented on an FPGA. Section V presents experimental results
establishing the effectiveness of the proposed scheme. Sec-
tion VI demonstrates an application of the proposed learning
mechanism. Finally, conclusions and future work are discussed
in Section VII.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. SELF-REPAIRING LEARNING RULE

The network uses the Leaky Integrate and Fire (LIF) [13]
neuron model (N1 N2, N3 and N4 in Figure 1 ), which
is a simplified model of a biological neuron widely used
in neuromorphic computing. It represents a good trade-off
between computational complexity and biological realism. The
representation of a LIF neuron is shown in Equation (1).

τmem
dv

dt
= −v(t) +Rmem

∑
i=1

m
Isyn

i(t) (1)

where τmem, Rmem, v and Isyn are the time constant,
membrane resistance, membrane potential and current injected
by a synapse respectively. m represents the total number of
synapses connected to the neuron. On reaching the threshold
voltage, the membrane potential is brought back and held at
0V following a nominal refractory period (2 clock cycles). The
expression is evaluated using the Euler method.

A tripartite synapse is a junction between a presynaptic
terminal, a postsynaptic terminal and an astrocyte cell. Let
us consider a signaling pathway between these three termi-
nals and a GABA interneuron terminal. We assume that the
presynaptic spiking frequency (fpre) is same as that of the
GABA neuron. Interneuron-astrocyte signaling dynamically
affects excitatory neurotransmission. Astrocytes, by the action
of retrograde signaling [12], regulates transmission of spikes
between two layers of the network (A∗ in Figure 1). For
example, under low fpre, the interneuron-astrocyte interaction
leads to an inhibitory effect representing a low transmission
probability (PR) with the associated neuron. However, at high
fpre, the effect gets reversed leading to a high transmission
probability. These outcomes are due to release of inositol 1, 4,
5-trisphosphate (IP3), Calcium and Glutamate released within
the astrocyte [14]. The above phenomenon controls the spikes
arriving the postsynaptic terminal by regulating the PR and
can be mathematically modeled by Equation (2).

PR = exp

(
(ffre − fs)2

2σ2

)
(2)

In biological systems, dendrites of a presynaptic neuron makes
multiple connections with a postsynaptic neuron [15]. The
propagation delays between these paths may differ. Hence,
in the proposed SANN, each pre-post neural coupling has
multiple synaptic pathways (8 in our experiments) where each
pathway is assumed to be morphologically modeled by a
different delay. This design of multiple pathways permits the
post synaptic potential to build up in a realistic way. Also,
more pathways gives greater fault tolerance, but the cost is in
implementation overhead.

To implement a self-repairing mechanism for the SANN,
a learning algorithm needs to be designed. In this approach,
the STDP [7], [8], together with BCM learning rule [9],
[10] are combined to develop the BCM-STDP rule. STDP
uses the time difference between presynaptic and postsynaptic
spikes to adjust the synaptic weights, where the equations
in (3) cause long-term potentiation (LTP) for ∆t ≤ 0 and
long-term depression (LTD) for ∆t > 0. In this approach,

Fig. 1: Basic unit for fault-tolerant learning mediated by
an astrocyte: Neurons N1, N2 and N3 resides in layer 1 and
N4 resides in layer 2 of the SANN. Astrocyte A∗ regulates
the PR of inputs received by N4 from N1, N2 and N3.
There are 8 parallel paths (synapses) between each pair of
presynaptic and postsynaptic neuron. The input layer receives
signals 54 or 64 spikes/window. A∗ modulates PR so as to
permit the selected pattern to the neuron N4. Based on the
input pattern, the system learns to achieve the required spike
rate (54 spikes/window).

potentiation/depression is described by, Equation (3)

δw(∆t) =

+A0.exp
(

∆t
τ+

)
,∆t ≤ 0

−A0.exp
(

−∆t
τ−

)
,∆t > 0

(3)

where δw(∆t) is the weight update, A0 is the time varying
height of STDP learning window controlling the maximum
levels of weight potentiation and depression, τ+ and τ− control
the decay rate of weight updating. ∆t=(tpre − tpost) is the
time difference between presynaptic spike time (tpre) and
postsynaptic spike time (tpost). Symmetrical plasticity window
is assumed and τ+=τ−=5 clock cycles. In addition, the BCM
learning rule modulates the height of the STDP plasticity
window as a function of the firing rate. This is modelled by
Equation (4).

A0 =
A

1 + exp (a (f − f0))
−A− (4)

where f and f0 are the actual and target firing rate of the
postsynaptic neuron (N4 in Figure 1), respectively. A is the
maximum height of plasticity window and A− is the maximum
height of plasticity window for depression. The parameter a is
constant which controls the opening/closing speed of plasticity
window and is found experimentally to be 0.1. The BCM rule
modulates the synaptic plasticity level by A0, associated with
STDP, as a function of postsynaptic neural activity. Specifically
when neurons are inactive, either early on in the normal
learning phase or when a fault occurs, the window is shifted up
the vertical axis (A0 increases) and as the postsynaptic neuron
activity increases, as learning progresses, the plasticity window
is moved down the vertical axis (A0 decreases) until learning
ceases.

III. HARDWARE IMPLEMENTATION OF SELF-LEARNING
RULES

The basic sub-block implemented on the FPGA for detect-
ing a three bit pattern associated with firing rates is shown



in Figure 1. We use a window of size 210 clock cycles to
determine the spike rate of the post synaptic neuron. Moving
average is used to determine the spike frequency. Input spike
trains of frequency 54 spikes/window and 64 spikes/window
are used to represent the input pattern. Neurons in layer 1
facilitate transmission of spike trains. There are 8 parallel
variable delay paths between the presynaptic and postsynaptic
neuron. Parallel paths allow the postsynaptic potential to build
up in neuron N4. Astrocyte A∗ regulates the spikes received
by the neuron in layer 2. For example, let us consider a
case in which the sub-block presented in Figure 1 is used
for detecting a pattern (54, 54, 64). If pattern (54, 54, 64) is
selected, the neurons in layer 1 produces spikes of frequencies
54, 54 and 64 respectively. Astrocyte monitors the spikes and
generates transmission PR depending on the pattern to permit
the selected pattern in the neuron N4. Considering a compact
hardware implementation, the PR represented in equation 2
consumes more resources and should be approximated. We
try to implement equation 2 using a set of piecewise linear
equations (8 in our implementation). Due to the astrocyte
PR regulation, If the pattern (54, 54, 64) is received by the
input neurons, the spike trains are delivered to the neuron
N4. Astrocyte restricts any other patterns of firing rates to
be transited to N4 by lowering PR as per equation (2).

The neurons in the system are LIF and have the following
parameters. Rmem = 1MΩ, Vth (threshold voltage) = 15mV ,
τmem=10ms and resting membrane potential Vr = 0v. Euler
method of integration evaluates the LIF expresion with a fixed
time step of ∆t = 2−10s (an approximation for 1ms). The
synapses used in this model are probabilistic in nature. We
use a uniformly distributed pseudorandom number generator
to produce a random number which is denoted by rand. We
use a Linear Feedback Shift Register (LFSR) to generate rand.
If rand is less than or equal to the release PR, synapse injects
a current to the neuron.

Isyn =

{
Iinj , rand ≤ PR
0, rand > PR

(5)

Based on the input pattern, neuron N4 learns to achieve the
required spike rate (54 spikes/window). Learning is achieved
using STDP and BCM rules. As per equation 3 and equation 4,
if output frequency deviates from the required output frequency
(54 spikes/window for neuron N4), the weights of synapses are
updated by a certain amount. Equation 3 is approximated using
the following relation.

δw∗(∆t) =

+A0.2

(
∆t
τ+

)
,∆t ≤ 0

−A0.2

(
−∆t
τ−

)
,∆t > 0

(6)

Equation 6 is efficient for hardware implementation as this
requires A0 to be shifted by a certain amount controlled by ∆t.
Considering a compact hardware implementation, the BCM
rule represented in equation 4 consumes more resources and
should be approximated. We implement equation 4 using a set
of 8 piecewise linear equations. Based on the synaptic weights,
a current is generated.

Iinj = (w + δw)∗.ε (7)

where w is the weight of the synapse at the current time
step and ε is a scaling factor determined empirically. In our
implementation ε = 2−6.

Fig. 2: (A) Firing rate of N4 under fault free condition:
All synapses between neurons in layer 1 and layer 2 are
fault free enabling 8 parallel delayed paths between each
connected neuron. A stable firing rate of 54 spikes/window
is established around 0.25ms. (B) Synaptic weights under
fault free condition: During the training phase, the synaptic
weights (24 plots: 8 synapses ×3) increases and achieves a
stable value around 0.25ms.

One aspect of our model is that it operates at an accelerated
biological time scale similar to that in [16], proving to be an
efficient realization of real-world tasks compared to [11].

IV. FAULT ANALYSIS

A. No Faults

Three input spike trains of frequency 54 spikes/window, 54
spikes/window, and 64 spikes/window are used for testing the
basic functionality of architecture depicted in Figure 1. These
input spike trains are compatible with the center frequency
of the associated synapses and hence the astrocyte delivers a
high PR for this pattern. The target frequency of neuron N4

is set to be 54 spikes/window. A normal learning phase will
occur and the spike rate gradually increases during the training
phase and eventually stabilizes at the target frequency of 54
spikes/window in 0.25ms as shown in Figure 2-A. Figure 2-
B shows the synaptic weights which, as expected, show a
slow rise over the learning period and stabilize at 0.25ms.
Additionally, the system is tested with presynaptic spike train
frequencies outside the filter window (patterns other than
(54,54,64) spikes/window) (results not shown) showed that no
learning occurred, which verified that the proposed network is
selective to the input spike train patterns.

B. Partial Faults

To evaluate the self-repairing capability of the proposed
SANN, the spike train frequency of both N1, N2, and N3 was
set to the center frequency of the Gaussian PR curve (54,54,64
spikes/window respectively) and the SANN was trained with a
target frequency for N4 of 54 spikes/window. Next, the system
is subjected to faults gradually after every 100ms (Figure 3).
For example, at 100ms, one of the path between N1 and N4 is
broken, we can see an activity drop here in Figure 3-A, which
subsequently causes the learning window to re-open and the
training process restarts. Likewise, we gradually increase the



Fig. 3: (A) Firing rate of N4 under different faulty conditions: Synapses between neurons in layer 1 and layer 2 are induced
faults gradually (1-7 under neuron N1 specifies the point in which each synapses between N1 and N4 is broken). A stable
firing rate of 54spikes/window is established in all faulty cases. (B) Synaptic weights between N1 and N4 under faults of
different percentage: We induce gradual faults on the system after every 100ms. Only one synapse of N1 is left unbroken after
700ms. (C) Synaptic weights between N2 and N4 under faults of different percentage: We induce gradual faults on the
system after 700ms. The only synapse of N2 is left unbroken after 1400ms. (D) Synaptic weights between N3 and N4 under
faults of different percentage: We induce gradual faults on the system after 1400ms. Only synapse of N2 is left unbroken
after 2100ms. We can see that for each fault percentages, the systems learn and modulates the synaptic weights for establishing
a constant firing rate similar to the fault-free results. The broken synapses do not increase the weight it just retains the weight.

faults in synapses between N1 and N4 leaving at least one
(No repair happens if all paths between N1 and N4 break). At
700ms, 7 synapses between N1 and N4 are broken. Then we
induced faults in synapses between N2 and N4. At 1400ms,
7 synapses between N2 and N4 are broken and at 2100ms,
7 synapses between N3 and N4 are broken. Hence weights

of nonfaulty synapses increase to compensate for synaptic
input to N4. This process of re-training the network to recover
the firing rate of N4 defines the self-repairing process. The
modulated weights of synapses associated with N1, N2, N3 are
shown in Figure 3-B, C and D respectively. It is evident from
Figure 3-A that the fault repair happens at a rate of ms, proving



TABLE I: Hardware Overhead for the basic unit(Figure 1)
implemented on the FPGA

Methodology/Components Slice Slice Reg LUT BRAM DSP
8 delayed paths per input 3154 3407 9108 0 128

A0 Generator 140 32 470 0 16
Moving Average 11 42 42 2 0

LIF Neuron 7 36 78 0 7

to be a very efficient scheme for real world applications. This
is a very important capability for the fault-tolerant hardware
systems due to the distributed, fine-grained repair capability
which will yield a significantly enhanced performance over
conventional approaches [17], [18].This enhancement is also
due to ability of the system to run at an accelerated time scale.

V. HARDWARE RESULTS

The proposed architecture is implemented on a Xilinx
Virtex-7 FPGA board. The firing rates of the output layer neu-
rons are monitored using the Xilinx ChipScope Pro analyzer.
Power estimation of the circuits was carried out using Xilinx
XPower Analyzer and timing analysis using Xilinx Timing
Analyzer. Table I reports the hardware resource footprint of
the proposed models. Total on-chip power dissipation of the
system is 0.535W . As evident from these reports, the proposed
architecture of neural self-learning can be implemented on
the FPGA with minimal hardware overhead and power con-
sumption. But, on considering large network architectures and
applications, the proposed implementation should be improved
in terms of hardware especially in the amount of DSP
consumption. In our implementation, we have 8 equations
for realizing PR/synapse and 8 equations for realizing A0.
Each equation consumes 2 DSPs, proving to be a constrain for
larger SANNs. We are considering alternative approximation
techniques to overcome this issue. The results presented in
Figure 2 and Figure 3 corresponds to the system operating at
a frequency of 10MHz. The maximum operating frequency
observed for the complete system is 60MHz. Hence fault
recovery can happen 6 times faster than the reported figures.

VI. APPLICATION

The main aim of the proposed work is to implement fault
tolerant SANN in FPGA. Once this is established success-
fully, we apply the concept to a real-world task. There are
some works which demonstrate the application of FPGA-
based neural networks in solving real world tasks [19]–[21].
Compared to these works, the proposed system has enhanced
fault-tolerance and learning capabilities. The emphasis of the
selected application is on the fault recovery while establishing
the task of robot navigation towards the direction of a col-
ored target (say red). The task implemented by the proposed
architecture can be explained in association with Table II. The
image of the red target is sensed in forward, right and left
direction. Based on the direction of the red target either in
forward, right or left direction, the FPGA input pins reflect
a value of logic 1 in Fc, Rc or Lc respectively. The system
receives information on the presence of an obstacle and is
presented a logic 1 in Fo, Ro or Lo on pins of the FPGA in the
forward, right or left directions respectively. D represents the
final direction of robot movement. In our experiment forward
direction has the highest priority and the reverse direction has

TABLE II: Mapping of input sensor reading to output
spikes

Fc Fo Rc Ro Lc Lo Direction (D)
0 0 x x x x Forward
1 0 x x x x Forward
1 1 x x x x Forward
0 1 0 0 x x Right
0 1 1 0 x x Right
0 1 1 1 x x Right
0 1 0 1 0 0 Left
0 1 0 1 1 0 Left
0 1 0 1 1 1 Left
0 1 0 1 0 1 Reverse
Fc=1 represents presence of the selected coloured target in the robot’s forward

direction. Fc=0 represents absence of selected coloured target in the robot’s
forward direction. Fo=1 represents an obstacle in robots forward direction.
Fo=0 represents no obstacle in robots forward direction. Fc=1 and Fo=1

represents an obstacle in robots forward direction, the obstacle is the selected
coloured target. Similar meaning holds of the directions Right (R) and Left (L)

the lowest priority (Forward > Right > Left > Reverse). To
analyze this let us consider the first case reported in Table II.
Here Fc and Fo have a logic 0, since there is no obstacle
in the forward direction spikes are delivered in the forward
neuron establishing movement in the forward direction. In
the second case Fc, Fo=(1, 0) detects the presence of the
colored target in the forward direction, hence robot navigates
to forward direction. In the third case, we have Fc, Fo=(1,
1), detecting the red target and the obstacle. We assume that
the red target is treated as the obstacle and hence the robot
navigates towards the red target by having spikes in forward
direction. Case Fc, Fo=(0, 1) depicts an obstacle in the forward
direction which is not the red target, hence priority goes to the
right direction. Similar interpretation holds for the right, left,
and reverse directions.

Figure 4 represents the complete system required for nav-
igation considering the specification in Table II. The SANN
consists of three layers. The input layer, the hidden layer, and
an output layer. The system consists of 6 neurons in the input
layer, each detecting either the presence of a red target or
an obstacle. These neurons are connected to the hidden layer
neuron using 8 variable delay synapses. An astrocyte provides
required PR tuning for each pattern and enables the encoded
pattern to be passed to the hidden layer neuron. For example,
there are 10 patterns to be distinguished by the hidden layer
and hence there are 10 astrocytes (not shown in the figure)
and 10 hidden layer neurons for detecting these patterns. If
there is a spike in the forward direction, this disables spike
generation in right, left and reverse direction. The output layer
neuron combines the hidden layer neurons responsible for each
direction. Since we consider 4 directions, we have 4 motor
neurons in the output layer.

VII. CONCLUSION

In this paper, we discussed three contributions. Firstly, we
built a fault tolerant neuromorphic architecture for SANNs.
Based on this self-repairing mechanism, when faults occur and
the synaptic connection is broken, the network still retains the
capability to reorganize itself by re-training and consequently
recover to the pre-fault mapping. Secondly, we discussed an
approximate model of the system for FPGA-based implemen-
tations. The work presented represents an initial step towards
a new form of fault tolerant designs, with low overhead and



Fig. 4: Application establishing robot navigation task There are 6 input layer neurons, each receives information on the
presence of a colored target or obstacle. Astrocytes enable specific patterns to be delivered to the hidden layer neuron (Astrocyte
is not shown in the figure). There are 4 motor neurons in the output layer, each delivering directionality information for particular
directions. The priority of movements is (Forward > Right > Left > Reverse), which is established using binary enable signals (E).

high performance. We are working further towards a more
compact architecture based on the proposed methodology for
large scale implementations of SANNs. Finally, the proposed
idea is applied to a robotic application. The proposed archi-
tecture is appropriate for FPGA-based applications running in
environments that induce faults in systems, where reliability is
crucial.

VIII. ACKNOWLEDGEMENTS

The work is part of the SPANNER project and is funded
by EPSRC grant(EP/N007050/1, EP/N00714X/1). Addition-
ally, the authors would like to acknowledge the platform
grant(EP/K040820/1) funded by EPSRC.

REFERENCES

[1] C. Mead and M. Ismail, Analog VLSI implementation of neural systems.
Springer Science and Business Media, 2012, vol. 80.

[2] A. Cassidy, S. Denham, P. Kanold, and A. Andreou, “FPGA Based Sil-
icon Spiking Neural Array,” in IEEE Biomedical Circuits and Systems
Conference, Nov. 2007, pp. 75–78.

[3] L. E. Clarke and B. A. Barres, “Emerging Roles of Astrocytes in Neural
Circuit Development,” Nature Reviews Neuroscience, vol. 14, no. 5, pp.
311–321, 2013.

[4] B. Stevens, “Neuron-astrocyte Signaling in the Development and Plas-
ticity of Neural Circuits,” Neurosignals, vol. 16, no. 4, pp. 278–288,
2008.

[5] G. G. Turrigiano, “The self-tuning neuron: Synaptic Scaling of Excita-
tory Synapses,” Cell, vol. 135, no. 3, pp. 422–435, 2008.

[6] K. Pozo and Y. Goda, “Unraveling Mechanisms of Homeostatic Synap-
tic Plasticity,” Neuron, vol. 66, no. 3, pp. 337–351, 2010.

[7] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,”
Nature neuroscience, vol. 3, pp. 1178–1183, 2000.

[8] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian
Learning through Spike-Timing-Dependent Synaptic Plasticity,” Nature
neuroscience, vol. 3, no. 9, pp. 919–926, 2000.

[9] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the
development of neuron selectivity: orientation specificity and binocular
interaction in visual cortex,” Journal of Neuroscience, vol. 2, no. 1, pp.
32–48, 1982.

[10] M. Bear and F. Ebner, “A physiological basis for a theory of synapse
modification,” WORLD SCIENTIFIC SERIES IN 20TH CENTURY
PHYSICS, vol. 10, pp. 121–130, 1995.

[11] J. Liu, L. McDaid, J. Harkin, J. Wade, S. Karim, A. P. Johnson, A. G.
Millard, D. M. Halliday, A. M. Tyrrell, and J. Timmis, “Self-Repairing
Learning Rule for Spiking Astrocyte-Neuron Networks (accepted),” in
Proceedings of the 9th International Conference on Neural Information
Processing (ICONIP), 2017.

[12] J. Wade, L. McDaid, J. Harkin, V. Crunelli, and S. Kelso, “Self-repair
in a Bidirectionally Coupled Astrocyte-Neuron (AN) System based on
Retrograde Signaling,” Frontiers in computational neuroscience, vol. 6,
2012.

[13] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge university press, 2002.

[14] G. Perea, R. Gómez, S. Mederos, A. Covelo, J. J. Ballesteros,
L. Schlosser, A. Hernndez-Vivanco, M. Martı́n-Fernndez, R. Quin-
tana, A. Rayan, A. Dı́ez, M. Fuenzalida, A. Agarwal, D. E. Bergles,
B. Bettler, D. Manahan-Vaughan, E. D. Martı́n, F. Kirchhoff, and
A. Araque, “Activity-dependent Switch of GABAergic Inhibition into
Glutamatergic Excitation in Astrocyte-neuron Networks,” Elife, vol. 5,
pp. 1–26, Dec. 2016.

[15] J. Smith and M. Martonosi, Space-Time Computing with Temporal
Neural Networks, ser. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2017.

[16] N. Jing, J.-Y. Lee, Z. Feng, W. He, Z. Mao, and L. He, “SEU Fault
Evaluation and Characteristics for SRAM-based FPGA Architectures
and Synthesis Algorithms,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 18, no. 1, p. 13, 2013.

[17] A. P. Johnson, D. M. Halliday, A. G. Millard, A. M. Tyrrell, J. Timmis,
J. Liu, J. Harkin, L. McDaid, and S. Karim, “An FPGA-based hardware-
efficient fault-tolerant astrocyte-neuron network,” in IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2016, pp. 1–8.

[18] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, and J. J. Wade,
“SPANNER: A Self-Repairing Spiking Neural Network Hardware
Architecture,” IEEE Transactions on Neural Networks and Learning
Systems, 2017.

[19] A. P. Johnson, J. Liu, A. G. Millard, S. Karim, A. M. Tyrrell,
J. Harkin, J. Timmis, L. J. McDaid, and D. M. Halliday, “Homeostatic
Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware
Perspective,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. PP, no. 99, pp. 1–13, Jul. 2017.

[20] A. P. Johnson, J. Liu, A. G. Millard, S. Karim, A. M. Tyrrell,
J. Harkin, J. Timmis, L. McDaid, and D. M. Halliday, “Homeostatic
Fault Tolerance in Spiking Neural Networks utilizing Dynamic Partial
Reconfiguration of FPGAs (accepted),” in 2017 International Confer-
ence on Field-Programmable Technology (FPT), Dec. 2017.

[21] J. B. George, G. M. Abraham, B. Amrutur, and S. K. Sikdar, “Robot
Navigation Using Neuro-electronic Hybrid Systems,” in 28th Interna-
tional Conference on VLSI Design, Jan. 2015, pp. 93–98.


