2,497 research outputs found

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic

    Radio continuum observations of Class I protostellar disks in Taurus: constraining the greybody tail at centimetre wavelengths

    Get PDF
    We present deep 1.8 cm (16 GHz) radio continuum imaging of seven young stellar objects in the Taurus molecular cloud. These objects have previously been extensively studied in the sub-mm to NIR range and their SEDs modelled to provide reliable physical and geometrical parametres.We use this new data to constrain the properties of the long-wavelength tail of the greybody spectrum, which is expected to be dominated by emission from large dust grains in the protostellar disk. We find spectra consistent with the opacity indices expected for such a population, with an average opacity index of beta = 0.26+/-0.22 indicating grain growth within the disks. We use spectra fitted jointly to radio and sub-mm data to separate the contributions from thermal dust and radio emission at 1.8 cm and derive disk masses directly from the cm-wave dust contribution. We find that disk masses derived from these flux densities under assumptions consistent with the literature are systematically higher than those calculated from sub-mm data, and meet the criteria for giant planet formation in a number of cases.Comment: submitted MNRA

    Brexit and the work-family conflict:a Scottish perspective

    Get PDF
    This paper examines the Scottish Government’s desire to maintain ties with EU law post-Brexit in the context of employment and equality law, particularly those laws which impact on work-family conflict. The paper critically examines whether there is, or could be, a distinctly Scottish perspective in the context of work-family rights post-Brexit. The paper frames the analysis by considering the potentially gendered implications of Brexit in this context. In doing so, it examines this issue from the perspective of traditional heterosexual dual-partnered working family models. It is argued that rights for working fathers will be most vulnerable post-Brexit, with related consequences for working mothers. Consequently, the implications of Brexit in this context are primarily viewed through the lens of working fathers. The paper then critically examines the Scottish Government’s position on EU employment and equality law in the post-Brexit context

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Measurements of the Sigma_c^0 and Sigma_c^{++} Mass Splittings

    Full text link
    Using a high statistics sample of photoproduced charmed particles from the FOCUS experiment at Fermilab (FNAL-E831), we measure the mass splittings of the charmed baryons Sigma_c^0 and Sigma_c^{++}. We find M(Sigma_c^0 - Lambda_c^+) = 167.38 +/- 0.21 +/- 0.13 MeV/c^2 and M(Sigma_c^++ - Lambda_c^+) = 167.35 +/- 0.19 +/- 0.12 MeV/c^2 with samples of 362 +/- 36 and 461 +/- 39 events, respectively. We measure the isospin mass splitting M(Sigma_c^++ - Sigma_c^0) to be -0.03 +/- 0.28 +/- 0.11 Mev/c^2. The first errors are statistical and the second are systematic.Comment: 10 pages, 2 figure
    corecore