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SUMMARY

The ampulla of Vater is a complex cellular environ-
ment from which adenocarcinomas arise to form a
group of histopathologically heterogenous tumors.
To evaluate the molecular features of these tumors,
98 ampullary adenocarcinomas were evaluated and
compared to 44 distal bile duct and 18 duodenal ad-
enocarcinomas. Genomic analyses revealed muta-
tions in the WNT signaling pathway among half of
C

the patients and in all three adenocarcinomas irre-
spective of their origin and histological morphology.
These tumors were characterized by a high fre-
quency of inactivating mutations of ELF3, a high
rate of microsatellite instability, and common focal
deletions and amplifications, suggesting common
attributes in the molecular pathogenesis are at play
in these tumors. The high frequency ofWNT pathway
activating mutation, coupled with small-molecule in-
hibitors of b-catenin in clinical trials, suggests future
ell Reports 14, 907–919, February 2, 2016 ª2016 The Authors 907
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treatment decisions for these patientsmay be guided
by genomic analysis.
INTRODUCTION

Though the pancreas, bile duct, and intestinal duodenum share

common embryologic origins in the ventral endoderm, the

adenocarcinomas arising in this region presumably originate

from different epithelial cellular constituents present at the site

(Zaret and Grompe, 2008). These tumors have been described

in many different ways: intra-ampullary, periampullary, intra-

ampullary papillary-tubular neoplasm, ampullary/ductal, periam-

pullary-duodenal, and ampullary/not otherwise specified. The tu-

mors clearly separated from the ampulla of Vater and localized in

the bile duct, duodenum, or pancreatic duct have been identified

as distal cholangiocarcinomas or distal bile duct (CAC), duodenal

(DUOAC), or pancreatic ductal (PDAC) adenocarcinomas.

As recommended in the AJCC seventh edition 2009 staging

system (Edge et al., 2009), the current subtype classification of

ampullary adenocarcinoma (AMPAC) is based on the anatomical

location from which the tumor is thought to arise (Edge et al.,

2009), sometimes supplemented by histopathology and expres-

sion of differential markers (Adsay et al., 2012; Chang et al.,

2013; Ehehalt et al., 2011; Morini et al., 2013). This classification

is subjective and prone to inter-observer variability and can

significantly impact treatment selection and therapeutic devel-

opment (Amptoulach et al., 2011; Heinrich and Clavien, 2010;

Romiti et al., 2012; Westgaard et al., 2013). Current treatment

approaches do not distinguish patients based on subtypes, yet

tumors may arise from at least the three epithelia that converge

at that site, and somemay arise from the ampulla itself, where lit-

tle is known of the specialized epithelium that may be present.

Malignancies that arise from different cellular origins often

have vastly differing sensitivities to therapeutics. Post hoc ana-

lyses of clinical trials using histopathological criteria have not

discerned such a difference and likely represent the inaccuracy

of such a classifier. However, as most therapeutic development

is focused on agents that target specific molecular mechanisms,

a molecular characterization that would allow selection of pa-

tients for specific therapies would facilitate therapeutic develop-

ment with the aim of improving outcomes and alleviate the

impact of an inaccurate subjective classification.

For this study, we have assembled a large cohort of AMPAC

with nearby DUOAC and CAC for comparison. We show that

tumors from the duodenum, ampulla of Vater, and distal bile

duct exhibit a common spectrum of features irrespective of

their morphology, marker expression, and cellular origin. Here,

we use the term ‘‘periampullary tumors’’ in this study to refer to

the three tumor types of AMPAC, DUOAC, and CAC collectively,

as defined by the AJCC seventh edition 2009 staging system

(Edge et al., 2009), excluding cases that clearly arise from the

pancreas (pancreatic adenocarcinoma [PDAC]).
RESULTS

In order to develop a molecular taxonomy for periampullary can-

cers and define subtypes with clinical relevance, we performed
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exome sequencing and copy-number analysis of 160 cancers

arising in the periampullary region, 62 of these clearly arising

from either the bile duct (n = 44) or the duodenum (n = 18) and

98 for which the epithelium of origin could not be clearly defined

morphologically (AMPAC). Mutations were validated by deep

and ultra-deep sequencing on a limited target region consisting

of 71 recurrently mutated genes. RNA sequencing (RNA-seq)

was performed on 30 patients: a 28-patient subset of the 98

ampullary tumors and a two-patient subset of the 18 duodenal

tumors.

Clinical Characteristics and Subtyping
The clinical characteristics of our patient cohort are described in

Table S1A. In this study, the anatomical primary site of origin of

all tumors was defined using the AJCC seventh edition 2009

staging system (Edge et al., 2009). In addition, the tumors were

also classified independently by cellular morphology and immu-

nohistochemistry (IHC) staining (see Experimental Procedures)

into intestinal, pancreatobiliary, or mixed subtypes (Table S1B).

Since treatment may be determined based on subtypes defined

by the combination of morphology and IHC even if these mea-

sures are somewhat subjective, it was an important objective

of our study to assess the reliability and meaning of these sub-

types. Subtyping according to IHC, the AMPAC tumors were

51% pancreatobiliary and 34% intestinal, with the remainder

mixed. CAC was dominated by the pancreatobiliary subtype,

86% as expected; however, 11% of CAC exhibited an intestinal

phenotype. In DUOAC, the intestinal subtype was 44%, with

22% pancreatobiliary and the remainder mixed.

By histological morphology, a smaller proportion of each

tumor type was classified as pancreatobiliary (AMPAC, 37%;

CAC, 77%; and DUOAC, 6%). The two methods of classifica-

tion yielded concordant subtypes only 62% of the time for

AMPAC tumors, 77% of the time in CAC, and 53% of the time

in DUOAC. Although the two methods often disagreed, all three

tumor types included in their numbers concordant cases of

all three subtypes. Thus, tumors originating in each organ site

in the periampullary region may be classified as any of the

three subtypes, though this classification system is rarely

applied to DUOAC or CAC tumors. These tumors were analyzed

by genomic methods to further characterize their molecular

properties.

Mutation Analysis
Exomes were sequenced to an average of 120-fold coverage re-

sulting in 28,795 mutations across 152 patients. Eight additional

patients were sequenced with targeted custom sequencing

and were included in the study (see Supplemental Experimental

Procedures, ‘‘Sequencing design and Mutation analysis,’’ and

Tables S1C–S1E). Microsatellite instable phenotypes were

observed in 12 patients representing each organ cohort (Fig-

ure 1), accounting for 18,572 of the whole-exome sequencing

(WES) discovery set. Using a method we developed based on

the enzyme slippage of the homopolymer region (E.S., unpub-

lished data), we identified two other patients among the targeted

sequencing set (Figure S1A).

Excluding microsatellite instable (MSI) tumors and correc-

ting for tumor purity, the median mutation rate did not vary
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Figure 1. Mutation Frequencies and MSI

Characteristics

(A) Mutation frequencies for all patients by

anatomical site (D, DUOAC; A, AMPAC; C, CAC)

and subtype (I, intestinal; M, mixed; PB, pan-

creatobiliary). Black dots, microsatellite stable

(MSS); red dots, microsatellite instable (MSI).

(B) Germline mutations in MMR gene associated

with Lynch syndrome were detected in 66% of the

MSI samples. Survival (m) is in months; black tile,

patient died of disease; white tiles, patient alive;

Lynch Mutation Freq, frequency each gene is

observed in Lynch syndrome patients; blue tiles,

missense mutations; green, frameshift mutations;

red, nonsense mutations; ‘‘L’’ = known Lynch

syndrome mutation; ‘‘d’’ deleterious mutation by

PolyPhen2.

(C) Kaplan-Meier plot for survival based on MSI

status in AMPAC (log rank p = 0.04, n = 96).

(D) Kaplan-Meier plot for survival based on MSI

status in all periampullary tumors (p = 0.0028,

n = 160).

See also Figures S1A–S1C and Tables S1A–S1E.
significantly across the AMPAC, CAC, and DUOAC (3.8, 4.6, and

4.7 per Mb, respectively) but was clearly distinct from the MSI

mutation rate (68, 127, and 108 per Mb, respectively) (Figures

1A, S1B, and S1C). Two-thirds of the hypermutated WES sam-

ples had germline mutation in genes associated with Lynch syn-

drome. Interestingly, PMS2, a gene that accounts for less than

5% of Lynch syndrome patients overall (Thompson et al.,

2004) (OMIM #600259), was mutated in one half of our MSI pa-

tients (Figure 1B). Although MSI was more common in DUOAC

than CAC patients, every morphologic category harbored at

least one PMS2 germline mutation in this study. Leaving aside

germline contribution, the overall frequency of MSI in AMPAC

was 3%. MSI appeared to confer a survival advantage in

AMPAC, as it does in other gastrointestinal (GI) cancers, as all

six AMPAC patients were alive ranging from 2 to 8 years after

diagnosis (p = 0.04 with a lack of negative event) (Figure 1C).

Taking all three anatomical sites into consideration, MSI have

better survival, p < 0.0021 (Figure 1D).

Non-negative matrix factorization was used to evaluate the

mutation signatures associated with periampullary tumors. We

identified five prominent signatures, out of 21 observed (Figures

2A, S2A, and S2B; Table S2). The most common signature was

C > T at CpG islands (#6). Indeed, this signature is most common

across all tumor types. A few CAC and AMPAC tumors had a

strong T > G, > C signature (#7) associated with the digestive

track tumors and consistent with DNA damage and exposure

to arsenic (Martinez et al., 2013). A C > G signature (#4) charac-

teristic of DNA damage by APOBEC enzymes was also present

in a few patients (Roberts et al., 2013).
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We observed signature #1 at greater

than 20% of the total signature in 9.6%

of our entire tumor set (6% AMPAC and

21% CAC). Signature #1 is characterized

by AC, AT > AN and is enriched in non-

transcribed regions of the genome in
samples from several cancer types (PDAC, medulloblastoma,

breast tumor, AML, and CLL). However, signature #1 was also

observed in the coding region of 18 out of 486 hepatocellular car-

cinoma (4%) and 31 out of 450 colorectal carcinoma (CRC) (7%)

(Lawrence et al., 2013; Totoki et al., 2014; K.R.C., unpublished

data). Whereas none of the known signatures have yet been

associated with a difference in outcome, signature #1 was asso-

ciated with poor outcomes in our study set (multivariate Cox pro-

portional hazards p = 0.02) (Figure 2B).

The analysis of the periampullary tumors, excluding MSI pa-

tients, revealed 19 genes mutated significantly above back-

groundusingMutSig-CV (Lawrence et al., 2013) (Figure 3A; Table

S3A). Considering the ratio of inactivating tomissensemutations,

an additional three genes were brought in to the significantly

mutated gene list (Table S3B) including PBRM1, RECQL4, and

KDM6A. Gene expression data confirmed that the variants

harboring missensemutation in the driver genes were expressed

between 85% and 88% of the time (Table S3C).

Most interestingly, ELF3 a transcriptional regulator of TGFBR2

was mutated in 10.6% of the periampullary tumors with predom-

inantly inactivating frameshift or nonsense mutations (Figure 3B).

This mutation frequency is three times higher than in any other

cancer (Table S3D) (Cerami et al., 2012; Gao et al., 2013; Law-

rence et al., 2014) (http://www.cBioPortal.org). In agreement

with our finding, ELF3 mutations were found in 9.5% of extrahe-

pathic CAC in a recent study of 74 samples with four inactivating

mutations out of seven (Nakamura et al., 2015). ELF3 mutation

occurred 71%of the timewithWNTpathwaymutations in all three

periampullary groups (Figure S3A). (chi-square test, p = 0.02).
, February 2, 2016 ª2016 The Authors 909
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Figure 2. Mutation Signature in Periampullary Tumors

(A) Heatmap of five dominant mutation signatures from NMF analysis of mutation spectrum for each subject. Intensity indicates the proportion of mutations for

that subject attributed to the indicated signature. Subjects are sorted first by signature 1, then signature 6 from the highest to the lowest value. Only signatures

with high penetrance are shown.

(B) Kaplan-Meier curve of survival in this cohort stratified by signature 1 levels (high, red line: signature 1 component >10% of all mutations; low, black line:

otherwise, multivariate Cox proportional hazards p = 0.001).

See also Figures S2A and S2B and Table S2.
Considering the 44 CAC alone, four genes were significantly

mutated in this cancer: TP53, KRAS, SMAD4, and CDKN2A

with the highest mutation incidence in TP53. Whereas intrahe-

patic CAC tumors frequently harbor BAP1, IDH1, and IDH2

(Nakamura et al., 2015), these were absent with the exception

of a single IDH1 hotspot mutation in the periampullary CAC.

This is in agreement with Nakamura et al. (2015), where no

IDH1 mutations could be detected among 74 extrahepatic tu-

mors (compared to a 5% mutation rate in intrahepatic tumor)

and a less than 3% BAP1 mutation rate was found in extrahe-
910 Cell Reports 14, 907–919, February 2, 2016 ª2016 The Authors
patic tumors (compared to a 12.4%mutation rate in intrahepatic

tumor).

Alteration of Key Signaling Pathways
The significantlymutated genes defined five pathways in periam-

pullary tumors: TP53/cell division, RAS/PI3K, WNT, TGF-b,

and chromatin remodeling pathways. We combined the point

mutations and copy-number alterations (CNA) changes at

the gene level within these five pathways to assess the impact

of these pathways among the three anatomical sites (Figures



Figure 3. Significantly Mutated Genes in

Non-MSI Periampullary Tumors

(A) Significantly mutated genes are displayed by

FDR value (MutSigCV). Genes with FDR < 0.1 are

located in the left panel, genes with FDR > 0.1 but

significantly inactivated are in the middle panel,

and genes slightly under the significant threshold

of the significantly mutated gene (SMG) list are in

the right panel. The amount of samples for each

tumor type is stacked.

(B) ELF3 inactivating mutations were distributed

along the entire gene characteristic of a tumor

suppressor (q < 1.6 3 10�11). All the mutations

found in the study are represented in the figure,

each mutation being found in one patient.

See also Tables S3A and 3B–S3D.
4A and 4B). The similarities and differences in gene mutations

per tumor types and subtypes are illustrated in Figures S3A

and S3B.

TheWNT pathway was mutated in 46% of patients overall but

was clearly differentially mutated across the three tumor types,

being more frequently mutated in DUOAC (72%) than in AMPAC

(49%) or CAC (30%) (chi-square p < 0.05) (Tables S4A and S4B).

This predominance of WNT pathway mutation in DUOAC was

due mainly to more frequent mutations of APC and SOX9.

Whereas the TP53, RAS, TGF-b signaling and chromatin remod-

eling pathways are deregulated in many tumor types, the WNT

pathway deregulation is reported only in gastrointestinal tumors

(Biankin et al., 2012; Cancer Genome Atlas, 2012). We reasoned

that grouping the patients by our histological classification might

enrichWNTmutation in the intestinal subtype relative to the pan-

creatobiliary subtype. As expected, the intestinal subtype had

67% WNT pathway alterations compared to pancreatobiliary

with 30% WNT alterations, very close to the WNT frequency

based on anatomical site (Figures 4B, S3A, and S3B; Tables

S4A and S4B). Although we observe a gradient ofWNT pathway

disruption in tumors as their anatomical site moves away from

the GI tract, WNT mutation is still frequent in CAC, or ‘‘pancrea-

tobiliary’’ subtype tumors.

TGFBR2 was also more frequently mutated in DUOAC than

AMPAC and CAC, but this may have been secondary to MSI,

which was in higher proportion in DUOAC. TGFBR2 harbors an

A homopolymer run of eight bases that is a frequent target of
Cell Reports 14, 907–919
mutation in MSI patients, and 5 of the 12

TGFBR2 mutations were at this site.

Interestingly, SMAD4, a gene frequently

mutated in PDAC, was the most

commonly mutated gene of the TGF-b

pathway in AMPAC and CAC, the tissue

sites in closest proximity to the pancreas.

Mutant KRAS was the major RAS

signaling oncogene in all three tumor

types. Overall, the RTK/RAS/PI3K path-

way was activated in all periampullary pa-

tients at a statistically similar rate ranging

from 84% to 94% among the three tumor

types (Tables S4A and S4B).
Alterations in the SWI/SNF chromatin remodeling pathway

were observed most frequently in ARID1A and ARID2. Overall,

mutations in the SWI/SNF complex were equally frequent in

the three tumor types.

Pathway Mutation Correlates with Disease Outcome
Multivariate analyses on the periampullary tumors as a group

showed mutations in the TGF-b pathway are associated with

better overall survival (multivariate Cox proportional hazard

p = 0.0059, HR = 0.42) independent of stage, gender, subtype,

and MSI status (multivariate Cox proportional hazard p =

0.029). Mutations in the PI3K pathway were also associated

with better overall survival (multivariate-Cox proportional haz-

ards p = 0.036, HR = 0.43) (Figure S3C). Mutations in TP53,

KRAS, WNT, and chromatin remodeling pathways showed no

significant association with outcomes in multivariate modeling.

Interestingly, TGF-b pathway mutations were also negatively

associated with mutation signature 1 (multivariate ANOVA p =

0.02), possibly explaining the association with outcomes. How-

ever, the contribution of signature 1 to outcomes was still signif-

icant when considering TGF-b pathway mutations in the model,

indicating that these two effects are not entirely redundant.

RNA Expression
RNA expression was analyzed in 28 AMPAC and 2 DUOAC. Due

to the high frequency of mutation in WNT and the current devel-

opment of therapeutic agents targeting b-catenin, we evaluated
, February 2, 2016 ª2016 The Authors 911



Figure 4. Major Altered Pathways in Periampullary Tumors

(A) Frequency of changes defined by somatic mutations or copy-number loss or gain is expressed as a percentage of cases for each gene. Inactivation (blue) or

activation (red) is graded in intensity by percent of patients affected.

(B) Genetic alterations in the significantly mutated genes grouped by pathway are illustrated for each patient. Note WNT and PI3K signaling pathways could be

found in the three tumor types and in each of their subtypes, including the pancreatobiliary subtype.

See also Figures S3A and S3B, wherein mutations in each gene are grouped by tumor type and subtype, and Figure S3C and Tables S4A and S4B.
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Figure 5. Relative RNA Expression of WNT

Antagonist, Agonist, and Target Genes

Tumors were split between those with and without

WNT canonical pathway mutations as shown in

the mutation panel. The level of RNA expression

for each gene can be visualized in the heat map

and the average expression of all the genes is

summarized in the lower panel. See also Figure S4

for fusions.
the expression data using a previously developedWNT signature

that included WNT antagonist, WNT agonist, and WNT target

genes (Donehower et al., 2013). An increase in expression in

these three gene groups as a result of the WNT pathway dereg-

ulation was noticed in colorectal cancer (Donehower et al.,

2013). This could be explained by the fact that CTNNB1 activa-

tion resulted in an increased expression of targeted genes and

the unrestricted WNT signaling set up a negative feedback

loop of the WNT antagonist genes attempting to shut down

signaling. In this study, we divided the patients into WNT

mutated and those without (Figure 5, mutation panel). We then

looked at the relative RNA expression in the two tumor groups

forWNT antagonists, WNT agonists, andWNT targets (Figure 5,

middle panel). The tumors with WNT mutations trend signifi-

cantly toward higher overall WNT gene expression (p < 0.001)

(Figure 5, lower panel). The WNT gene expression profile was

also increased in some of the WNT non-mutated patients, indi-

cating that some other mechanism affecting the WNT pathway

might be at play.

Fusion analysis identified two noticeable non-recurrent fu-

sions: SLC45A3-ELK4 used as a prognosis marker in prostate
Cell Reports 14, 907–919
cancer, where its expression is elevated

(Kumar-Sinha et al., 2012; Ren et al.,

2014), and a LINE-MET fusion in a patient

without any KRAS or TP53 driving

mutations and a high MET expression

(Figure S4; Table S5). LINE element

insertions are found in PDAC, colon,

hepatocellular, esophageal, and lung

carcinoma (Paterson et al., 2015; Rodi�c

et al., 2015).

Copy-Number Alteration
The majority of CNAs involved entire

chromosomes or chromosome arms as

opposed to focal events, which are com-

mon in gastrointestinal tumors. Arm-level

deletions outnumbered amplifications

across all tumors (Figure 6A). The three

tumor types shared four arm-level ampli-

fications and nine arm-level deletions.

AMPAC shared amplification of 1q and

deletion of 1p and 8p CAC (Table S6A).

AMPAC shared no events specifically

with DUOAC, making AMPAC marginally

more similar to CAC in its CNA pattern.

AMPAC also had two unique amplica-
tions on 5p and 6p, whereas 3q amplification was unique to

CAC, and 6p was unique to DUOAC.

A combined GISTIC analysis revealed as expected a focal

deletion of 9p23.1, involving CDKN2A (Table S6B). A focal

deletion in chromosome 9 removed the promotor and 50 end of

KDM4C (Figure 6B). Although present in every tumor type, it

was only statistically significant in AMPAC (Table S6B). This

deletion resulted in a significant decrease in expression of

KDM4C as well as the upstream UHRF2 (Figure 6B, inserts).

Interestingly, overexpression of both genes has been associated

with a pro-growth effect on colon cancer cells (KDM4C) and a

much lower disease-free survival and overall survival in patients

with colon cancer (UHRF2) (Lu et al., 2014; Kim et al., 2014).

KDM4C forms also complexes with b-catenin (Kim et al., 2014;

Yamamoto et al., 2013).

DISCUSSION

This study compares the genetic constitution of ampullary can-

cer with two nearby tumor types with pathologic classification.

Historically, ampullary cancers have been classified as intestinal
, February 2, 2016 ª2016 The Authors 913



Figure 6. Copy-Number Alteration

(A) Nexus GISTIC analysis of copy-number alteration by anatomical site. Upper blue panel shows copy-number gains and the lower red panel shows copy-

number losses for each tumor type. Blue arrows demark changes characteristic of a given anatomical site.

(legend continued on next page)
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or pancreatobiliary subtypes based on immunohistochemistry

and/or cellular morphology. The genomic analysis mirrored

these results by the finding that some ampullary tumors exhibit

properties of intestinal tumors such as microsatellite instability,

ELF3 mutation, and disruption of WNT signaling.

We found that the classification approaches of the three peri-

ampullary tumors are often discordant with one another. No

unique molecular characteristics were specifically associated

with one tumor subtype or one tumor type. Interestingly patients

from each tumor type and subtype exhibited alterations in WNT

pathway genes, including nearly one-fourth of the CAC tumors

and one-fourth of the pancreatobiliary tumors. Other studies

using subtype classification different from ours report WNT

pathway mutations in AMPAC pancreatobiliary (PB) subtype

(Achille et al., 1996; Hechtman et al., 2015). Transcriptional

changes in AMPAC tumors in WNT signaling genes was

increased, as expected, in tumors with WNT mutation, reinforc-

ing a molecular dichotomy. With half of the patients across the

three tumor types harboring WNT mutation, this could impact

greatly the choice of treatment since several WNT pathway tar-

geted therapies are in development. Ampullary, duodenal and

distal bile duct adenocarcinoma could be regarded as a WNT

± entity from the perspective of treatment. Thus, the molecular

data suggest that clinical testing for WNT signaling status might

be beneficial to patients in the near future, making this a stepping

stone to personalized medicine.

The identification of ELF3 as a significantly mutated gene with

an inactivating mutation pattern is also of interest. It was re-

ported at lower frequency in bladder and biliary tract cancers,

but not in any other cancer so far. ELF3 encodes an ETS-domain

transcription factor. By interacting with promoter regions, ELF3

is implicated in the regulation of several genes during epithelial

cell differentiation (Oliver et al., 2012). One of the genes transac-

tivated by ELF3 is TGFBR2, a prime initiator of TGF-b signaling, a

pathway with a dual role in tumorigenesis, suppressing tumor

progression at early stages but enhancing invasion and metas-

tasis at later stages (Roberts and Wakefield, 2003). The tumor-

suppressor antiproliferative function of ELF3 was previously

noted in studies on colorectal, prostate, and oral squamous can-

cer cells (Iwai et al., 2008; Lee et al., 2003, 2008; Shatnawi et al.,

2014) andmore recently in biliary tract cancer cell line (Nakamura

et al., 2015). Such studies showed that ELF3 directly binds to the

promoter region of EGR1 (Lee et al., 2008) and TGFBR2 (Lee

et al., 2003), increasing the transcription of these two tumor

suppressor genes in CRC, whereas ELF3 binding to androgen

receptor (AR) (Shatnawi et al., 2014) and matrix metalloprotei-

nase-9 (MMP9) (Iwai et al., 2008) promoters suppressed the

transcriptional activity of these tumor growth- and invasive-

ness-promoting genes in prostate and squamous cancers,

respectively. However, recent observations also suggested an

oncogenic functional role in CRC development when ELF3 is

amplified, and its upregulated expression correlated with cancer

progression and decreased patient survival (Wang et al., 2014).
(B) Focal deletion in the promotor region and at the 50 end of KMD4C impacts its an

(Integrative Genomics Viewer, Broad Institute). Deletions are in blue, and amplifica

groups: samples with (1) or without (2) focal deletion. The color ladder on the righ

See also Tables S6A and S6B.

C

A WNT-independent CTNNB1 transactivation facilitating tumor

development was also reported (Wang et al., 2014). Such dual

function has also been observed in breast and prostate cancer

(Longoni et al., 2013; Oliver et al., 2012; Shatnawi et al., 2014).

It could be argued that when ELF3 inactivation occurs early in tu-

mor development, it provides a moderate growth advantage by

suppressing TGF-b signaling. The fact that we found ELF3muta-

tion in a duodenal adenoma with intraepithelial neoplasia and

dysplasia components (DUOAC 707) and that 75%of the tumors

with ELF3mutation were lower-grade tumors (stage I or II) could

support this hypothesis. The ELF3 functional switch might

depend on tumor stage and expression of other factors and/or

be associated with its expression level, some genes being trans-

activated only when ELF3 is overexpressed. In any case, ELF3 is

implicated in the development of periampullary tumors, and its

exact functional role during periampullary tumor development

will need to be investigated further.
EXPERIMENTAL PROCEDURES

Clinical Data

A total of 160 tumors (98 AMPAC, 44 CAC, and 18 DUOAC) were collected by

the different groups participating in this study: Australian Pancreatic Cancer

Genome Initiative (APGI), Baylor College of Medicine Elkins Pancreatic Center

(BCM) as a member of The Cancer Research Banking, MD Anderson Cancer

Center (MDA), and Technical University of Dresden (TUD). Ethical approval

was obtained from each of these institution’s research ethic boards. All

patients underwent surgical pancreatoduodenectomy with curative intent

without known residual disease. Clinical data variables including race, sex,

age, familial history, operative procedure, pathological findings, and survival

from the date of initial surgery to the date of death or last follow up are pre-

sented in Table S1A.
Tumor Classification

A section of the tumor was fixed in formaldehyde and embedded in paraffin

(FFPE). H&E-stained and immunohistochemistry slides from the FFPE tissue

were examined by the pathologists from the original site of collection to

confirm diagnosis of the specific tumor section and to grade expression of

subtype markers. All slides were then centrally reviewed by a single patholo-

gist (A.G.) who was blinded to all clinical, molecular, and pathological data

at the time of review and scoring. The distinction between pancreatic, biliary,

ampullary or intestinal carcinomawas based on the anatomical site fromwhich

the carcinoma was thought to arise using the guidelines recommended in the

AJCC seventh edition 2009 staging manual (Edge et al., 2009).

Histology and Morphology

Tumors were classified as pancreatobiliary, intestinal, or mixed morphological

subtype based on the cellular morphology. A morphology similar to colorectal

adenocarcinoma (tall often pseudostratified columnar epithelium with oval

nuclei forming elongated glands) was defined as intestinal type. Morphology

similar to pancreatobiliary carcinoma (small solid nest of cells with rounded

nuclei surrounded by desmoplastic stroma and forming simple or branching

rounded glands) was defined as pancreatobiliary type. Mixed histological

types contained a mixture of both intestinal and pancreatobiliary types with

80% or less of the cells with either morphology. Grade of differentiation was

also noted aswell as presence of adenoma, signet-ring cells, ormucinous cells

(Table S1B).
dUHRF2 expression. Human Omni 2.5 SNP array results were analyzed in IGV

tions are in red. Gene expressionwas analyzed by dividing the samples into two

t indicates the tumor type (pink, AMPAC; purple, CAC; and orange, DUOAC).
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Immunohistochemistry Staining

FFPE sections were stained with antibodies against MUC1 and CDX2 (see

Supplemental Experimental Procedures). This two-antibody panel has previ-

ously been validated by our group to predict prognosis in ampullary carcinoma

(Chang et al., 2013), and the methods we used were the same as employed in

that study. Briefly, expression was evaluated by estimating the percentage of

positively stained carcinoma cells and the intensity of the staining (0 absent, 1+

weak, 2+, 3+ strong). H scores were calculated for bothmarkers bymultiplying

the percentage of stained cells by the intensity of the staining. The ratio of the

CDX2/MUC1 H score defined the subtypes: a ratio of 2 and above and smaller

than 0.5 were considered intestinal and pancreatobiliary, respectively. Inter-

mediate values were associated to a mixed subtype (Table S1B).

Nucleic Acid Isolation

Samples were retrieved and had full face sectioning performed in OCT embed-

ding media to verify the presence of carcinoma in the sample to be sequenced

and to estimate the percentage of malignant epithelial nuclei in the sample

relative to stromal nuclei. Macrodissection was performed if possible to excise

areas of non-malignant tissue. DNA and RNA extraction was performed at the

center of collection following their own protocol with all samples being tracked

using unique identifiers though out the process (see Supplemental Methods).

DNAwas shipped and quantified at BCM-Human Genome Sequencing Center

(HGSC) using the PicoGreen DNA Assay.

SNP Array Assays

SNP arrays were processed at the HGSC for each sample using the Illumina

Infinium LCG Assay according to the manufacturer’s guidelines. Specifically,

assays were performed with Human Omni2.5-8 BeadChips (Illumina, catalog

no.WG-311-2513), interrogating 2.5million SNP loci with aMAF detection limit

of 1% (see Supplemental Experimental Procedures). SNP calls were collected

using Illumina’s GenomeStudio software (version 2011.1) in which standard

SNP clustering and genotyping were performed with the default settings rec-

ommended by the manufacturer. Data from samples that met a minimum SNP

call rate of 0.9 were considered passing and were included in subsequent an-

alyses. Results were analyzed on Nexus (BioDiscovery).

Sequencing

Library preparation, whole (Bainbridge et al., 2011) and targeted exome cap-

ture, and regular and ultra-deep sequencing on HiSeq 2000 platform are

detailed in Supplemental Experimental Procedures. In brief, 152 samples

were whole-exome sequenced and their mutations validated with a custom

design targeted exome capture. The targeted capture consisted of a panel

of 71 genes covering 0.25 Mb, and the probes were designed by Nimblegen

(genes are listed in Supplemental Experimental Procedures). These genes

were selected on the basis they were significantly mutated and/or had

high impact in the development of AMPAC, PDAC, DUOAC, CAC, and other

pancreatic tumor types. The selective targeted capture was also used in dis-

covery on eight samples received at a later date (six samples) or of low purity

(two samples with <10% tumor). The mutations identified with the targeted

capture were validated with ultra-deep (single-molecule reconstruction)

sequencing.

Data Analysis

Primary Data Analysis

Initial sequence analysis was performed using the HGSC Mercury analysis

pipeline (https://www.hgsc.bcm.edu/software/mercury). First, the primary

analysis software on the instrument produces .bcl files that are transferred

off-instrument into the HGSC analysis infrastructure by the HiSeq Real-time

Analysis module. Once the run is complete and all .bcl files are transferred,

Mercury runs the vendor’s primary analysis software (CASAVA), which demul-

tiplexes pooled samples and generates sequence reads and base-call

confidence values (qualities). The next step is the mapping of reads to the

GRCh37 Human reference genome (http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/) using the Burrows-Wheeler aligner (Li and

Durbin, 2009) (BWA; http://bio-bwa.sourceforge.net/) and producing a BAM

(Li et al., 2009) (binary alignment/map) file. The third step involves quality reca-

libration (using GATK; DePristo et al., 2011; https://www.broadinstitute.org/
916 Cell Reports 14, 907–919, February 2, 2016 ª2016 The Authors
gatk/) and, where necessary, the merging of separate sequence-event

BAMs into a single sample-level BAM. BAM sorting, duplicate-read marking,

and realignment to improve in/del discovery all occur at this step.

Cancer Data Analysis

Primary BAM files were separately run through Atlas-SNP (Shen et al., 2010),

Atlas-Indel, and PInDel (Ye et al., 2009). Data were aggregated for each tumor/

normal pair, and variants were cross-checked for each tissue pair. Variant

annotation was performed using Annovar (Wang et al., 2010), COSMIC (Forbes

et al., 2011), and dbSNP (Sherry et al., 2001). Variant filtering was performed to

remove low-quality variants. Cohort-level data processing was performed to

remove additional false somatic calls by filtering against a cohort of normal

tissues.

Ultra-deep Sequencing Analysis

Duplicate reads were aggregated and consensus variants were defined as the

variant being present in 90% of the reads contributing to both halves of the

duplex molecule. Subsequent filtering was employed to remove variants in

which there was either mapping error (tested using BLAST) or sequence error

non-consensus block rate of 50% (Altschul et al., 1990). Variants detected in

this way were annotated using ANNOVAR, COSMIC, and dbSNP annotations

(Forbes et al., 2011; Sherry et al., 2001; Wang et al., 2010).

Mutational Signature

Mutation signatureswere generated froma set of over 6,000 somaticmutations

across a range of cancer types using non-smooth non-negative matrix factor-

ization (nsNMF) (K.R.C., unpublished data; Pascual-Montano et al., 2006). The

solution resulted in 21distinctmutational signatures, similar to those previously

reported (Alexandrov et al., 2013; Gaujoux and Seoighe, 2010), many of which

could be correlated with previously published mutational modes, including

APOBEC, UV radiation exposure, POLE hypermutation (Lawrence et al.,

2013), and CpG island mutation. Mutations for this cohort where compared

against the solved NMF to generate a mutational decomposition for each of

the tumor samples. Samples were aggregated and compared using hierarchi-

cal clustering and other correlative statistics to clinical covariates.

Tumor Purity and Normalization Mutation Rate

Tumor purity was estimated using ASCAT and the tumor variant allelic fraction

of driver genes. The average of both analyses was plotted against the number

of mutations in each tumor, and the slope value was used to approximate the

number of mutations that would have been identified in 100% tumor cellularity

(Figure S1A).

Significantly Altered Genes

Several approaches were taken to dissect genes and pathways which

were mutated more often than by chance in this dataset. We used the final

MAF file (Tables S6A and 6B) to calculate significantly mutated genes using

MutSig-CV and an inactivation bias test (Lawrence et al., 2013; Totoki et al.,

2014).

Microsatellite Instability Coefficient

For details, see Supplemental Experimental Procedures.

Multivariable Cox Analysis

Cox proportional hazards analysis was performed using the survival (Ther-

neau, 2000) package in R (R Development Core Team, 2008). We included

age at diagnosis, gender, stage, grade, tumor type, histologic subtype (IHC),

and mutation status (WNT, TGFB, TP53, KRAS, PI3K, and chromatin remodel-

ing) in the multivariate Cox analysis. Country of origin and ethnicity were not

included as covariates since they had no associated effect with survival.

RNA-Seq

Total RNA was prepared using the AllPrep RNA/DNA isolation kit (QIAGEN).

RNA integrity was confirmed (RIN > 7.0) on a Bioanalyzer (Agilent). RNA-seq

libraries were prepared using the TruSeq Stranded total RNA LT library kit

(Illumina) following the manufacturer’s instructions. 100-base-pair-end

sequencing was then performed to a minimum depth of 50 million reads of

each sample on an Illumina HiSeq2000 sequencer.

Transcript Expression Analysis

Gene Expression of the WNT Pathway

The profiles in the RNA-seq dataset were quantile normalized, and log-trans-

formed expression values were then centered to SDs from the median across

https://www.hgsc.bcm.edu/software/mercury
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://bio-bwa.sourceforge.net/
https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/


sample profiles. Tumors were split into two groups (those withWNT canonical

pathway mutations and those without such mutations) and were scored for

relative activity in theWNT pathway. The gene signature score within each tu-

mor profile was defined as the average of the centered values for the WNT

signature genes.

Fusion Analysis

The deFuse software version 0.6.1 (McPherson et al., 2011) with default set-

tings was used to detect fusion genes. The deFuse results were further filtered

by removing identified read through fusions, selecting coding regions, select-

ing in-frame (open reading frame) genes and selecting samples with a deFuse

confidence score of >80%. This filtering resulted in a list of candidate fusion

genes. To characterize these candidate fusion genes, we took each spanning

junction read and using the BLAT tool in UCSC genome browser examined

where the reads mapped. The fusions that mapped with 100% identity to

each part of the identified fusion (gene1 or gene2) were selected for further

analysis. This filter removed genes that mapped to multiple locations. Next,

each RNA BAM from candidate fusion genes was examined in IGV, looking

for stacked soft clipped reads, changes in coverage, at the identified fusion

breakpoints. The sequence of each soft clipped read was brought into the

UCSC genome browser and mapped using BLAT. Only fusions that had reads

that matched (100%) the identified fusion genes were considered further.

ACCESSION NUMBERS

The accession number for the sequence data reported in this paper is dbGAP:

PRJNA280134.
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