250 research outputs found

    Dual Credit & Early College Experiences: Myths & NAD Opportunities

    Get PDF

    Coupling Interval Variability Differentiates Ventricular Ectopic Complexes Arising in the Aortic Sinus of Valsalva and Great Cardiac Vein From Other Sources

    Get PDF
    Objectives The objective of this study was to determine whether premature ventricular contractions (PVCs) arising from the aortic sinuses of Valsalva (SOV) and great cardiac vein (GCV) have coupling interval (CI) characteristics that differentiate them from other ectopic foci. Background PVCs occur at relatively fixed CI from the preceding normal QRS complex in most patients. However, we observed patients with PVCs originating in unusual areas (SOV and GCV) in whom the PVC CI was highly variable. We hypothesized that PVCs from these areas occur seemingly randomly because of the lack of electrotonic effects of the surrounding myocardium. Methods Seventy-three consecutive patients referred for PVC ablation were assessed. Twelve consecutive PVC CIs were recorded. The ΔCI (maximum – minimum CI) was measured. Results We studied 73 patients (age 50 ± 16 years, 47% male). The PVC origin was right ventricular (RV) in 29 (40%), left ventricular (LV) in 17 (23%), SOV in 21 (29%), and GCV in 6 (8%). There was a significant difference between the mean ΔCI of RV/LV PVCs compared with SOV/GCV PVCs (33 ± 15 ms vs. 116 ± 52 ms, p 60 ms demonstrated a sensitivity of 89%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 94%. Cardiac events were more common in the SOV/GCV group versus the RV/LV group (7 of 27 [26%] vs. 2 of 46 [4%], p < 0.02). Conclusions ΔCI is more pronounced in PVCs originating from the SOV or GCV. A ΔCI of 60 ms helps discriminate the origin of PVCs before diagnostic electrophysiological study and may be associated with increased frequency of cardiac events

    Balo's Concentric Sclerosis In A Woman From Papua New Guinea

    Get PDF
    We report a case of Balo's concentric sclerosis (a variant of multiple sclerosis) from Papua New Guinea. A 42-year-old woman with a past episode of optic neuritis presented with a left hemiparesis. Magnetic resonance imaging revealed a solitary large tumour-like right cerebral lesion with a pattern of concentric bands of different signal intensities. The diagnosis was established by biopsy of the lesion. To our knowledge, this is the first reported case of Balo's concentric sclerosis in the indigenous population of Papua New Guinea

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC

    Get PDF
    OBJECTIVE The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS The strongest associations in the MHC class II region (rs3957146, beta [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (beta [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, beta [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.Peer reviewe

    Circadian variability patterns predict and guide premature ventricular contraction ablation procedural inducibility and outcomes

    Get PDF
    Background Infrequent intraprocedural premature ventricular complexes (PVCs) may impede radiofrequency catheter ablation (RFA) outcome, and pharmacologic induction is unpredictable. Objective The purpose of this study was to determine whether PVC circadian variation could help predict drug response. Methods Consecutive patients referred for RFA with detailed Holter monitoring and frequent monomorphic PVCs were included. Patients were divided into 3 groups based on hourly PVC count relationship to corresponding mean heart rate (HR) during each of the 24 hours on Holter: fast-HR-dependent PVC (F-HR-PVC) type for a positive correlation (Pearson, P <.05), slow-HR-dependent PVC (S-HR-PVC) type for a negative correlation, and independent-HR-PVC (I-HR-PVC) when no correlation was found. Results Fifty-one of the 101 patients (50.5%) had F-HR-PVC, 39.6% I-HR-PVC, and 9.9% S-HR-PVC; 30.7% had infrequent intraprocedural PVC requiring drug infusion. The best predictor of infrequent PVC was number of hours with PVC count <120/h on Holter (area under the curve 0.80, sensitivity 83.9%, specificity 74.3%, for ≥2 h). Only F-HR-PVC patients responded to isoproterenol. Isoproterenol washout or phenylephrine infusion was successful for the 3 S-HR-PVC patients, and no drug could increase PVC frequency in the 12 I-HR-PVC patients. Long-term RFA success rate in patients with frequent PVCs at baseline (82.9%) was similar to those with infrequent PVC who responded to a drug (77.8%; P = .732) but significantly higher than for those who did not respond to any drug (15.4%; P <.0001). Conclusion A simple analysis of Holter PVC circadian variability provides incremental value to guide pharmacologic induction of PVCs during RFA and predict outcome. Patients with infrequent I-HR-PVC had the least successful outcomes from RF ablation

    Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Get PDF
    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex-and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value &lt;5 x 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 x 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.</p
    • …
    corecore