114 research outputs found

    Mars Micromissions

    Get PDF
    A Mars micromission launches as an Ariane 5 secondary as early as November I, 2002. One possible mission is a Comm/nav micromission .orbiter. The other possible mission is a Mars airplane. Both missions are enabled by a lowcost, common micromisson bus design. The future of Mars micromissions has at least two micromissions per Mars Opportunity In cooperation with CNES. Other destinations besides Mars are possible by small changes and technology Infusion in the micromission system design detailed here. Micromissions enable a new class of science investigations and comm/nav orbiters due to low-cost, focused design

    Ion‐scale structure in Mercury’s magnetopause reconnection diffusion region

    Full text link
    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury’s dayside polar cap boundary (PCB) to infer such small‐scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3–3 mV/m reconnection electric fields separated by ~5–10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.Key PointsEnergetic electrons at Mercury map magnetic topology at ~150 msFirst direct observation of flux transfer event open‐field topology at MercuryModulations of the reconnection rate at Mercury occur at ion kinetic scalesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133575/1/grl54476_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133575/2/grl54476.pd

    In Flight Calibration of the Magnetospheric Multiscale Mission Fast Plasma Investigation

    Get PDF
    The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is difficult with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors

    Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    Get PDF
    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations

    Community-associated Methicillin-resistant Staphylococcus aureus and Healthcare Risk Factors

    Get PDF
    To determine frequency of methicillin-resistant Staphylococcus aureus infections caused by strains typically associated with community-acquired infections (USA300) among persons with healthcare-related risk factors (HRFs), we evaluated surveillance data. Of patients with HRFs, 18%–28% had a "community-associated" strain, primarily USA300; of patients without HRFs, 26% had a "healthcare-associated" strain, typically USA100

    MMS Measurements of the Vlasov Equation: Probing the Electron Pressure Divergence Within Thin Current Sheets

    Get PDF
    We investigate the kinetic structure of electron‐scale current sheets found in the vicinity of the magnetopause and embedded in the magnetosheath within the reconnection exhaust. A new technique for computing terms of the Vlasov equation using Magnetospheric Multiscale (MMS) measurements is presented and applied to study phase space density gradients and the kinetic origins of the electron pressure divergence found within these current sheets. Crescent‐shaped structures in ∇⊄2fe give rise to bipolar and quadrupolar signatures in v·∇fe measured near the maximum ∇·Pe inside the current layers. The current density perpendicular to the magnetic field is strong (J⊄∌2 ÎŒA/m2), and the thickness of the current layers ranges from 3 to 5 electron inertial lengths. The electron flows supporting the current layers mainly result from the combination of E×B and diamagnetic drifts. We find nonzero J·Eâ€Č within the current sheets even though they are observed apart from typical diffusion region signatures.publishedVersio

    Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    Get PDF
    AlfvĂ©n waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic AlfvĂ©n wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Get PDF
    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    Energy Partitioning Constraints at Kinetic Scales in Low- Turbulence

    Get PDF
    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here we present observations of plasma fluctuations in low- turbulence using data from NASAs Magnetospheric Multiscale mission in Earths magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance should be highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas

    The Neural Representation of Prospective Choice during Spatial Planning and Decisions

    Get PDF
    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments
    • 

    corecore