1,743 research outputs found

    Bench-to-bedside review: Developmental influences on the mechanisms, treatment and outcomes of cardiovascular dysfunction in neonatal versus adult sepsis

    Get PDF
    Sepsis is a significant cause of morbidity and mortality in neonates and adults, and the mortality rate doubles in patients who develop cardiovascular dysfunction and septic shock. Sepsis is especially devastating in the neonatal population, as it is one of the leading causes of death for hospitalized infants. In the neonate, there are multiple developmental alterations in both the response to pathogens and the response to treatment that distinguish this age group from adults. Differences in innate immunity and cytokine response may predispose neonates to the harmful effects of pro-inflammatory cytokines and oxidative stress, leading to severe organ dysfunction and sequelae during infection and inflammation. Underlying differences in cardiovascular anatomy, function and response to treatment may further alter the neonate's response to pathogen exposure. Unlike adults, little is known about the cardiovascular response to sepsis in the neonate. In addition, recent research has demonstrated that the mechanisms, inflammatory response, response to treatment and outcome of neonatal sepsis vary not only from that of adults, but vary among neonates based on gestational age. The goal of the present article is to review key pathophysiologic aspects of sepsis-related cardiovascular dysfunction, with an emphasis on defining known differences between adult and neonatal populations. Investigations of these relationships may ultimately lead to 'neonate-specific' therapeutic strategies for this devastating and costly medical problem

    (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.

    Get PDF
    UnlabelledThe pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2(-)), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms.ImportanceS. selenatireducens CUZ and D. chlorophilus NSS are (per)chlorate- and chlorate-reducing bacteria, respectively, whose genomes encode both anaerobic and aerobic-hybrid pathways for the degradation of phenylacetate and benzoate. Previous studies have shown that (per)chlorate-reducing bacteria and chlorate-reducing bacteria (CRB) can use aerobic pathways to oxidize aromatic compounds in otherwise anoxic environments by capturing the oxygen produced from chlorite dismutation. In contrast, we demonstrate that S. selenatireducens CUZ is the first perchlorate reducer known to utilize anaerobic aromatic degradation pathways with perchlorate as an electron acceptor and that it does so in preference over the aerobic-hybrid pathways, regardless of any oxygen produced from chlorite dismutation. D. chlorophilus NSS, on the other hand, may be carrying out anaerobic and aerobic-hybrid processes simultaneously. Concurrent use of anaerobic and aerobic pathways has not been previously reported for other CRB or any microorganisms that encode similar pathways of phenylacetate or benzoate degradation and may be advantageous in low-oxygen environments

    Secondhand Smoke Exposure and Preclinical Markers of Cardiovascular Risk in Toddlers

    Get PDF
    Objective: Links between secondhand smoke (SHS) exposure and cardiovascular disease in adults are well established but seldom reported during childhood. Although rates of smoking have decreased, young children from low-income backgrounds remain likely to be exposed to SHS. The purpose of this study was to investigate relationships between SHS exposure in young children and several preclinical markers of cardiovascular risk that have been established as relevant to adult populations. Methods: 139 children, 2–5 years of age, were enrolled in a cross-sectional study. SHS exposure was objectively determined by hair nicotine level; a comprehensive panel of clinical markers (AM blood pressure, fasting glucose & insulin, lipid profiles, inflammation) and research markers (markers of oxidation, endothelial stress, and endothelial repair) of cardiovascular risk status were assessed. Univariate and multivariate linear regression were used to evaluate relationships between SHS exposure and cardiovascular risk markers. Results: Hair nicotine levels were directly correlated with blood pressure and serum CRP, and inversely correlated with serum HDL and endothelial cell progenitor cell prevalence. In multivariate analyses, these relationships remained when controlled for age, sex, BMI z-score, maternal education, and method of payment. Additionally, in multivariate analyses, hair nicotine level was significantly negatively correlated with total anti-oxidant capacity. Conclusions: These results support the view that SHS exposure in the very young has a detectable relationship with several markers of cardiovascular risk, long before the emergence of clinical disease. Further studies to define mechanisms and strategies to prevent and mitigate these risks early in life are warranted

    Mitogen-activated protein kinase phosphatase-1 inhibits myocardial TNF-α expression and improves cardiac function during endotoxemia

    Get PDF
    Aims: Myocardial tumour necrosis factor-α (TNF-α) expression induces cardiac dysfunction in endotoxemia. The aim of this study was to investigate the role of mitogen-activated protein kinase phosphatase-1 (MKP1) pathway in myocardial TNF-α expression and cardiac function during endotoxemia. Methods and results: Lipopolysaccharide (LPS) increased MKP1 expression in the myocardium in vivo and in cultured neonatal cardiomyocytes in vitro. LPS-induced extracellular signal-regulated kinase (ERK) 1/2 and p38 phosphorylation in the myocardium was prolonged in MKP1 -/- mice. Myocardial TNF-α mRNA and protein levels were enhanced in MKP1 -/- compared with wild-type (WT) mice in endotoxemia, leading to a further decrease in cardiac function. To study if Rac1/p21-activated kinase 1 (PAK1) signalling regulates MKP1 expression, cardiomyocytes were treated with LPS. Inhibition of Rac1 and PAK1 by a dominant negative Rac1 adenovirus (Ad-Rac1N17) and PAK1 siRNA, respectively, blocked LPS-induced MKP1 expression in cardiomyocytes. PAK1 siRNA also decreased p38 and c-Jun N-terminal kinase (JNK) activation, and TNF-α expression induced by LPS. Furthermore, deficiency in either Rac1 or JNK1 decreased myocardial MKP1 expression in endotoxemic mice. Conclusion: LPS activates the Rac1/PAK1 pathway, which increases myocardial MKP1 expression via JNK1. MKP1 attenuates ERK1/2 and p38 activation, inhibits myocardial TNF-α expression, and improves cardiac function in endotoxemia. Thus, MKP1 represents an important negative feedback mechanism limiting pro-inflammatory response in the heart during sepsis. © The Author 2011

    Exploring Late Bronze Age systems of bronzework production in Switzerland through Network Science

    Get PDF
    YesMany hundreds of Bronze Age bronze artefacts are known from excavations in Switzerland, yet the interpretation of production networks from the object find locations remain problematic. It is proposed that the decorative elements used on items, such as ring-jewellery, can be used as elements to assist in the identification of artisanal traditions and ‘schools’, and also regional or community preference and selection of specific designs. Combining the analysis of over 1700 items of ring-jewellery from Switzerland with approaches from network science has facilitated the identification of regional clustering of design elements, comparable with cultural typologies in the area. It is also possible to identify potential instances of cultural differentiation through decoration within the broader regional cultural traditions. The study highlights important facets of bronzework production in the region of Switzerland, while also demonstrating future potential directions which could build upon the European wide dataset of prehistoric bronzework.Primary research conducted under previous funding at University of Basel, Switzerland – SNF gran

    Public communication by research institutes compared across countries and sciences: building capacity for engagement or competing for visibility?

    Get PDF
    Leading academic institutions, governments, and funders of research across the world have spent the last few decades fretting publicly about the need for scientists and research organisations to engage more widely with the public and be open about their research. While a global literature asserts that public communication has changed from a virtue to a duty for scientists in many countries and disciplines, our knowledge about what research institutions are doing and what factors drive their 'going public' is very limited. Here we present the first cross-national study of N = 2,030 research institutes within universities and large scientific organisations in Brazil, Germany, Italy, Japan, the Netherlands, Portugal, the United Kingdom, and the United States of America. We find that institutes embrace communication with non-peers and do so through a variety of public events and traditional news media-less so through new media channels-and we find variation across countries and sciences, yet these are less evident than we expected. Country and disciplinary cultures contribute to the level of this communication, as do the resources that institutes make available for the effort; institutes with professionalised staff show higher activity online. Future research should examine whether a real change in the organisational culture is happening or whether this activity and resource allocation is merely a means to increase institutional visibility

    Obsessive Compulsive Behaviors in Children with Developmental Disabilities: A Function-based Conceptual Framework and Single-case Application

    Get PDF
    Repetitive behaviors are prevalent in a number of neurodevelopmental disorders including autism spectrum disorder (ASD) and intellectual disability (ID). A subset of repetitive behaviors found in ASD and ID can be topographically similar to symptoms in obsessive compulsive disorder (OCD). Through two manuscripts in preparation (Chapters 2 and 4), this project aims to discuss a function-based approach to conceptualizing, assessing, and treating obsessive compulsive behaviors (OCBs) in ASD and ID. The first manuscript is a conceptual paper responding to the variety of approaches researchers use to categorize the behaviors (i.e., assigning a comorbid diagnosis or acknowledging overlapping symptoms of ASD). To date, a clear consensus has not yet been reached amongst the researchers in this field. This paper builds on the differential diagnosis guidelines of the DSM-5 and clinical experts in the field by providing a multidisciplinary, function-based approach to conceptualizing, assessing, and treating individual OCBs in ASD using clinical case examples. Obsessive compulsive behaviors can serve a variety of functions beyond the reduction of anxiety including automatic positive reinforcement or socially mediated reinforcement. The strengths of function-based treatment combined with cognitive behavioral therapy for working with complex obsessive compulsive behaviors in ASD are presented. A second manuscript demonstrates the applicability of this framework in a single case study of four-year-old boy with mild ID and obsessive compulsive behaviors. An intensive, adapted version of function-based cognitive behavioral therapy was administered in the boy’s preschool. The treatment successfully eliminated two OCBs while concomitantly teaching joint engagement with peers on work-related tasks. Results were maintained at a three-week follow- up. The implications of the treatment protocol, in addition to the broader importance of working from a multidisciplinary perspective for children with obsessive compulsive behaviors, are discussed

    Wastewater Analysis of Mpox Virus in a City With Low Prevalence of Mpox Disease: an Environmental Surveillance Study

    Get PDF
    BACKGROUND: Tracking infectious diseases at the community level is challenging due to asymptomatic infections and the logistical complexities of mass surveillance. Wastewater surveillance has emerged as a valuable tool for monitoring infectious disease agents including SARS-CoV-2 and Mpox virus. However, detecting the Mpox virus in wastewater is particularly challenging due to its relatively low prevalence in the community. In this study, we aim to characterize three molecular assays for detecting and tracking the Mpox virus in wastewater from El Paso, Texas, during February and March 2023. METHODS: In this study, a combined approach utilizing three real-time PCR assays targeting the C22L, F3L, and F8L genes and sequencing was employed to detect and track the Mpox virus in wastewater samples. The samples were collected from four sewersheds in the City of El Paso, Texas, during February and March 2023. Wastewater data was compared with reported clinical case data in the city. FINDINGS: Mpox virus DNA was detected in wastewater from all the four sewersheds, whereas only one Mpox case was reported during the sampling period. Positive signals were still observed in multiple sewersheds after the Mpox case was identified. Higher viral concentrations were found in the pellet than in the supernatant of wastewater. Notably, an increasing trend in viral concentration was observed approximately 1-2 weeks before the reporting of the Mpox case. Further sequencing and epidemiological analysis provided supporting evidence for unreported Mpox infections in the city. INTERPRETATION: Our analysis suggests that the Mpox cases in the community is underestimated. The findings emphasize the value of wastewater surveillance as a public health tool for monitoring infectious diseases even in low-prevalence areas, and the need for heightened vigilance to mitigate the spread of Mpox disease for safeguarding global health. FUNDING: Center of Infectious Diseases at UTHealth, the University of Texas System, and the Texas Epidemic Public Health Institute. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of these funding organizations

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore