105 research outputs found

    Local sales restrictions significantly reduce the availability of menthol tobacco: findings from four Minnesota cities

    Full text link
    BACKGROUND In 2017 and 2018, Minneapolis, St. Paul, Duluth and Falcon Heights, Minnesota were among the first US cities to restrict the sale of menthol tobacco to adult-only stores. The study examined changes in the availability and marketing of these products following policy implementation. METHODS Retail store audits were conducted approximately 2 months pre-policy and post-policy implementation. Tobacco retail stores (n=299) were sampled from tobacco licensing lists in Minneapolis, St. Paul, Duluth and Falcon Heights, as well as six comparison cities without menthol policies. The presence of menthol tobacco was assessed, along with the number of interior and exterior tobacco ads and promotions at each store. RESULTS The majority of policy intervention stores (grocery, convenience stores and pharmacies) were compliant (Minneapolis, 84.4%; Duluth, 97.5%; and St. Paul and Falcon Heights, 100.0%) and did not sell menthol tobacco. In contrast, menthol tobacco was available in all comparison city stores, and most (96.0%) exempted tobacco shops and liquor stores post-policy implementation. Two Minneapolis convenience stores added interior tobacco shops, allowing them to continue selling menthol tobacco. Significant decreases in menthol tobacco marketing post-policy were observed in the stores' interior in Minneapolis, St. Paul and Duluth (p<0.001) and on the stores' exterior in Duluth (p=0.023). CONCLUSIONS Findings demonstrate high rates of compliance, indicating that sales restrictions can significantly reduce the availability of menthol tobacco. However, challenges to policy adherence underscore the need for continued monitoring and enforcement action

    The compression type of coronary artery motion in patients with ST-segment elevation acute myocardial infarction and normal controls: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of the location of culprit lesions responsible for ST-segment elevation myocardial infarctions may allow for prevention of these events. A retrospective analysis of coronary artery motion (CAM) was performed on coronary angiograms of 20 patients who subsequently had ST-segment elevation myocardial infarction treated by primary or rescue angioplasty and an equal number of age and sex matched controls with normal angiograms.</p> <p>Findings</p> <p>There was no statistically significant difference between the frequency of CAM types of the ST-segment elevation acute myocardial infarction and control patients (p = 0.97). The compression type of CAM is more frequent in the proximal and mid segments of all three coronary arteries. No statistically significant difference was found when the frequency of the compression type of CAM was compared between the ST-segment elevation acute myocardial infarction and control patients for the individual coronary artery segments (p = 0.59).</p> <p>Conclusion</p> <p>The proportion of the compression type of coronary artery motion for individual artery segments is not different between patients who have subsequent ST-segment elevation myocardial infarctions and normal controls.</p

    Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members.

    Get PDF
    Transcriptional enhancer factor domain family member 4 (TEAD4) is a downstream effector of the conserved Hippo signaling pathway, regulating the expression of genes involved in cell proliferation and differentiation. It is up-regulated in several cancer types and is associated with metastasis and poor prognosis. However, its role in hepatocellular carcinoma (HCC) remains largely unexplored. Using data from The Cancer Genome Atlas, we found that TEAD4 was overexpressed in HCC and was associated with aggressive HCC features and worse outcome. Overexpression of TEAD4 significantly increased proliferation and migration rates in HCC cells in vitro as well as tumor growth in vivo. Additionally, RNA sequencing analysis of TEAD4-overexpressing HCC cells demonstrated that TEAD4 overexpression was associated with the up-regulation of genes involved in epithelial-to-mesenchymal transition, proliferation, and protein-folding pathways. Among the most up-regulated genes following TEAD4 overexpression were the 70-kDa heat shock protein (HSP70) family members HSPA6 and HSPA1A. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction experiments demonstrated that TEAD4 regulates HSPA6 and HSPA1A expression by directly binding to their promoter and enhancer regions. The pharmacologic inhibition of HSP70 expression in TEAD4-overexpressing cells reduced the effect of TEAD4 on cell proliferation. Finally, by overexpressing TEAD4 in yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ)-knockdown HCC cells, we showed that the effect of TEAD4 on cell proliferation and its regulation of HSP70 expression does not require YAP and TAZ, the main effectors of the Hippo signaling pathway. Conclusion: A novel Hippo-independent mechanism for TEAD4 promotes cell proliferation and tumor growth in HCC by directly regulating HSP70 family members

    Genomic analysis of focal nodular hyperplasia with associated hepatocellular carcinoma unveils its malignant potential: a case report.

    Get PDF
    Background Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence. Methods A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone. Results Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events. Conclusion To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases

    Targeted Deletion of the Metastasis-Associated Phosphatase Ptp4a3 (PRL-3) Suppresses Murine Colon Cancer

    Get PDF
    Ptp4a3 (commonly known as PRL-3) is an enigmatic member of the Ptp4a family of prenylated protein tyrosine phosphatases that are highly expressed in many human cancers. Despite strong correlations with tumor metastasis and poor patient prognosis, there is very limited understanding of this gene family's role in malignancy. Therefore, we created a gene-targeted murine knockout model for Ptp4a3, the most widely studied Ptp4a family member. Mice deficient for Ptp4a3 were grossly normal. Fewer homozygous-null males were observed at weaning, however, and they maintained a decreased body mass. Although Ptp4a3 is normally associated with late-stage cancer and metastasis, we observed increased Ptp4a3 expression in the colon of wildtype mice immediately following treatment with the carcinogen azoxymethane. To investigate the role of Ptp4a3 in malignancy, we used the most commonly studied murine colitis-associated colon cancer model. Wildtype mice treated with azoxymethane and dextran sodium sulfate developed approximately 7-10 tumors per mouse in the distal colon. The resulting tumor tissue had 4-fold more Ptp4a3 mRNA relative to normal colon epithelium and increased PTP4A3 protein. Ptp4a3-null mice developed 50% fewer colon tumors than wildtype mice after exposure to azoxymethane and dextran sodium sulfate. Tumors from the Ptp4a3-null mice had elevated levels of both IGF1Rβ and c-MYC compared to tumors replete with Ptp4a3, suggesting an enhanced cell signaling pathway engagement in the absence of the phosphatase. These results provide the first definitive evidence implicating Ptp4a3 in colon tumorigenesis and highlight the potential value of the phosphatase as a therapeutic target for early stage malignant disease. © 2013 Zimmerman et al

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s) underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI) methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition.</p> <p>Methods</p> <p>To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis.</p> <p>Results</p> <p>Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99) between the total number of hypermethylated CGIs and GI<sub>50 </sub>values (<it>i.e</it>., increased drug resistance) following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells.</p> <p>Conclusion</p> <p>Selective epigenetic disruption of distinct biological pathways was observed during development of platinum resistance in ovarian cancer. Integrated analysis of DNA methylation and gene expression may allow for the identification of new therapeutic targets and/or biomarkers prognostic of disease response. Finally, our results suggest that epigenetic therapies may facilitate the prevention or reversal of transcriptional repression responsible for chemoresistance and the restoration of sensitivity to platinum-based chemotherapeutics.</p
    corecore