35 research outputs found

    Human Embryonic Stem Cell-Derived Mesenchymal Stroma Cells (hES-MSCs) Engraft In Vivo and Support Hematopoiesis without Suppressing Immune Function: Implications for Off-The Shelf ES-MSC Therapies.

    Get PDF
    Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function

    Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14–15 September 2015

    Get PDF
    This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this ‘may be difficult for cell-based medicinal products’. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates

    Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage

    Get PDF
    The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells

    Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation

    No full text
    Traditionally, human embryonic stem cells (hESCs) are propagated by mechanical dissection or enzymatic dissociation into clusters of cells. To facilitate up-scaling and the use of hESC in various experimental manipulations, such as fluorescence-activated cell sorting, electroporation, and clonal selection, it is important to develop new, stable culture systems based on single-cell enzymatic propagation. Here, we show that hESCs, which were derived and passaged by mechanical dissection, can be rapidly adjusted to propagation by enzymatic dissociation to single cells. As an indication of the stability of this culture system, we demonstrate that hESCs can be maintained in an undifferentiated, pluripotent, and genetically normal state for up to 40 enzymatic passages. We also demonstrate that a recombinant trypsin preparation increases clonal survival compared with porcine trypsin. Finally, we show that human foreskin fibroblast feeders are superior to the commonly used mouse embryonic fibroblast feeders in terms of their ability to prevent spontaneous differentiation after single-cell passaging. Importantly, the culture system is widely applicable and should therefore be of general use to facilitate reliable large-scale cultivation of hESCs, as well as their use in various experimental manipulations

    Proof-of-Concept of a Novel Cell Separation Technology Using Magnetic Agarose-Based Beads

    No full text
    The safety of the cells used for Advanced Therapy Medicinal Products is crucial for patients. Reliable methods for the cell purification are very important for the commercialization of those new therapies. With the large production scale envisioned for commercialization, the cell isolation methods need to be efficient, robust, operationally simple and generic while ensuring cell biological functionality and safety. In this study, we used high magnetized magnetic agarose-based beads conjugated with protein A to develop a new method for cell separation. A high separation efficiency of 91% yield and consistent isolation performances were demonstrated using population mixtures of human mesenchymal stem cells and HER2(+) SKBR3 cells (80:20, 70:30 and 30:70). Additionally, high robustness against mechanical stress and minimal unspecific binding obtained with the protein A base conjugated magnetic beads were significant advantages in comparison with the same magnetic microparticles where the antibodies were covalently conjugated. This study provided insights on features of large high magnetized microparticles, which is promising for the large-scale application of cell purification.Funding Agencies|AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing - Swedish Agency for Innovation Systems VINNOVA [2016-05181]; CAMP, Competence Centre for Advanced Medical Products - Swedish Agency for Innovation Systems VINNOVA [2017-02130]; KTH library</p

    Derivation of a xeno-free human ES cell line.

    No full text
    Elimination of all animal material during both the derivation and long-term culture of human embryonic stem cells (hESCs) is necessary prior to future application of hESCs in clinical cell therapy. The potential consequences of transplanting xeno-contaminated hESCs into patients, such as an increased risk of graft rejection [STEM CELLS 2006;24:221229] and the potential transfer of nonhuman pathogens, make existing hESC lines unsuitable for clinical applications. To avoid xeno-contamination during derivation and culture of hESCs, we first developed a xeno-free medium supplemented with human serum, which supports long-term (> 50 passages) culture of hESCs in an undifferentiated state. To enable derivation of new xeno-free hESCs, we also established xeno-free human foreskin fibroblast feeders and replaced immunosurgery, which involves the use of guinea pig complement, with a modified animal-product-free derivation procedure. Here, we report the establishment and characterization (> 20 passages) of a xeno-free pluripotent diploid normal hESC line, SA611

    Transcriptional profiling of human embryonic stem cells differentiating to definitive and primitive endoderm and further towards the hepatic lineage

    No full text
    Human embryonic stem cells (hESC) can differentiate into a variety of specialized cell types, and they constitute a useful model system to study embryonic development in vitro. In order to fully utilize the potential of these cells, the mechanisms that regulate the developmental processes of specific lineage differentiation need to be better defined. The aim of this study was to explore the molecular program involved in the differentiation of hESC towards definitive endoderm (DE) and further into the hepatic lineage, and to compare that to primitive endoderm (PrE) differentiation. To that end, we applied two protocols, a specific DE differentiation protocol and an intrinsic differentiation protocol that mainly mediates PrE formation. We collected hESC, hESC-derived DE, DE-derived hepatocyte-progenitors (DE-Prog), DE-derived hepatocyte-like cells (DE-Hep), and the corresponding PrE-derivatives. The samples were analyzed using microarrays, and we identified sets of genes which were exclusively up-regulated in DE-derivatives (compared to PrE-derivatives) at discrete developmental stages. We also investigated known protein interactions among the set of up-regulated genes in DE-Hep. The results demonstrate important differences between DE- and PrE-differentiation on the transcriptional level. In particular, our results identify a unique molecular program, exclusively activated during development of DE and the subsequent differentiation of DE towards the hepatic lineage. We identified key-genes and pathways of potential importance for future efforts to improve hepatic differentiation from hESC. These results reveal new opportunities for rational design of specific interventions with the purpose of generating enriched populations of DE derivatives, including functional hepatocytes
    corecore