1,588 research outputs found

    Identification and characterisation of proteases in Mycobacterium tuberculosis

    Get PDF
    Virulence determinants of M. tuberculosis remain largely unknown. Of key interest has been the ability of the bacterium to survive intracellularly within its host cell, the macrophage, and its ability to cause extensive tissue necrosis. Exported proteases are commonly associated with virulence in bacterial pathogens, yet their role in Mycobacterium tuberculosis has virtually not been studied. Preliminary experiments showed M. tuberculosis culture filtrates contained a proteolytic activity inhibited by mixed serine/cysteine protease inhibitors and activated by Ca²⁺, features typical of some serine proteases, notably subtilisins, and possibly metalloproteases. Purification attempts were unsuccessful. A family of five genes that encode putative, secreted, serine proteases has recently been described in M. tuberculosis. These proteases share 36-47% sequence identity and are all encoded with putative signal peptides, suggesting that they are translocated across the cytoplasmic membrane. One member, mycP1, was selected for further study. The gene product, mycosin-1, was 30-35% identical to bacterial subtilisin-like serine proteases and contained the classic catalytic triad and oxyanion hole. Mycosin-1 also contained a typical signal peptide, a likely propeptide, and a Cterminal hydrophobic sequence with a high transmembrane potential. Topology analyses predicted mycosin-1 to be a type I ectoprotein. Consistent with this, expression of mycosin-1 in M. tuberculosis and in Mycobacterium smegmatis transformed with mycP1 (M. smegmatis-P1) was limited strictly to the cell envelope, as seen by Western blotting, and immunogold electron microscopy. Only full-length, 50-kDa mycosin-1 was observed by Western blotting in broth-grown M. tuberculosis and M. smegmatis-P1 lysates, whereas a 40-kDa species was detected in 6-week M. tuberculosis culture filtrates. A similar 40-kDa immunoreactive band was also observed in lysates of macrophages infected with M. tuberculosis, consistent with robust transcription of the mycP 1 gene during growth in macrophages. Since putative mature mycosin-1 has a molecular weight of 38.6 kDa, the 40-kDa protein may represent activated mycosin-1 after propeptide cleavage. In conclusion, mycosin-1 is an exported, cell envelopeassociated subtilisin homolog that is expressed during growth of M. tuberculosis in vitro and in macrophages

    Cardiovascular risk factors in patients with Addison's disease: a comparative study of South African and Swedish patients

    Get PDF
    BACKGROUND: Patients with Addison's disease (AD) in Scandinavia have an increased risk for premature death due to cardiovascular disease (CVD). Serum lipids are important risk factors for CVD and vascular mortality. Replacement doses of hydrocortisone have historically been higher in Sweden than South Africa. The primary aim was to study the lipid profiles in a large group of patients with AD with the hypothesis that the lipid profile in patients in Sweden would be worse than in South Africa. METHODS: In a cross-sectional study, 110 patients with AD (55 from South Africa, 55 from Sweden) matched for age, gender, ethnicity and BMI were studied. Anthropometric measures, blood pressure, lipids, highly sensitive C-reactive protein (hs-CRP) and adiponectin were studied. RESULTS: All patients were Caucasian and the majority were women N = 36 (65.5%). Mean (standard deviation; SD) ages of the Swedish and South African patients were 52.9 (13.0) and 52.6 (14.4) years and BMI 25.3 (3.2) and 25.8 (4.1) kg/m 2 , respectively. The mean total daily hydrocortisone dose was greater in the Swedish patients than the South African patients, [33.0 (8.1) versus 24.3 (8.0) mg; p<0.0001]. South African patients had higher median (interquartilerange; IQR) triglycerides (TG) [1.59 (1.1-2.46) versus 0.96 (0.74-1.6) mmol/l; p<0.001], total cholesterol (TC) [6.02(1.50) versus 5.13 (0.87) mmol/l; p<0.001], LDL-C [4.43 (1.44) versus 2.75 (0.80) mmol/l; p<0.001] and median hs-CRP [2.15 (0.93-5.45) versus 0.99 (0.57-2.10) mg/L; p<0.003] and lower HDL-C [0.80 (0.40) versus 1.86 (0.46) mmol/l; p<0.001] than the Swedish patients. Approximately 20% of the patients in both cohorts had hypertension and diabetes mellitus. CONCLUSIONS: South African patients with AD have worse lipid profiles and higher hs-CRP compared to their matched Swedish patients, despite lower doses of hydrocortisone. It is uncertain at this time whether these are due to genetic or environmental factors

    Biomass burning emission disturbances of isoprene oxidation in a tropical forest

    Get PDF
    We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gas measurements carried out during the South AMerican Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene hydroxy hydroperoxide (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK+MACR+ISOPOOH]∕[isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO<150ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O3]∕[CO]), to evaluate the impact of biomass burning emissions on the oxidative capacity of the Amazon forest atmosphere. We observed that biomass burning emissions disturb the isoprene oxidation reactions, especially for fresh plumes ([MVK+MACR+ISOPOOH]∕[isoprene] = 7) downwind. The oxidation of isoprene is higher in fresh smoke plumes at lower altitudes (∼500m) than in aged smoke plumes, anticipating near the surface a complex chain of oxidation reactions which may be related to secondary organic aerosol (SOA) formation. We proposed a refinement of the OH calculation based on the sequential reaction model, which considers vertical and horizontal transport for both biomass burning regimes and background environment. Our approach for the [OH] estimation resulted in values on the same order of magnitude of a recent observation in the Amazon rainforest [OH]≅106 (moleculescm−3). During the fresh plume regime, the vertical profile of [OH] and the [MVK+MACR+ISOPOOH]∕[isoprene] ratio showed evidence of an increase in the oxidizing power in the transition from planetary boundary layer to cloud layer (1000–1500m). These high values of [OH] (1.5×106moleculescm−3) and [MVK+MACR+ISOPOOH]∕[isoprene] (7.5) indicate a significant change above and inside the cloud decks due to cloud edge effects on photolysis rates, which have a major impact on OH production rates

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
    corecore