22 research outputs found

    The effects of death and post-mortem cold ischemia on human tissue transcriptomes

    Get PDF
    Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.Peer ReviewedPostprint (published version

    Fluxes of cosmic rays: A delicately balanced stationary state

    Full text link
    The analysis of cosmic rays fluxes as a function of energy reveals a {\it knee} slightly below 101610^{16} eV and an {\it ankle} close to 101910^{19} eV. Their physical origins remain up to now quite enigmatic; in particular, no elementary process is known which occurs at energies close to 101610^{16} eV. We propose a phenomenological approach along the lines of nonextensive statistical mechanics, a formalism which contains Boltzmann-Gibbs statistical mechanics as a particular case. The knee then appears as a crossover between two fractal-like thermal regimes, the crossover being caused by process occurring at energies ten million times lower than that of the knee, in the region of the quark hadron transition (109\simeq 10^{9} eV). This opens the door to an unexpected standpoint for further clarifying the phenomenon.Comment: RevTeX, 10 pages including 1 eps figur

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Landscape of transcription in human cells

    Get PDF
    Eukaryotic cells make many types of primary and processed RNAs that are found either in specific sub-cellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic sub-cellular localizations are also poorly understood. Since RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modifications and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations taken together prompt to a redefinition of the concept of a gene

    Erratum to: Promoter-like epigenetic signatures in exons displaying cell type-specific splicing

    Get PDF
    Es tracta d'un erratum de l'article publicat a Promoter-like epigenetic signatures in exons displaying cell type-specific splicing-Genome Biology, 2015, 16, 236. DOI: 10.1186/s13059-015-0797-8After the publication of this work [1] an error was noticed in Fig. 7. The panel‘h’ is missing from Fig. 7. Please see the corrected figure below. The publisher apologises for this error

    Promoter-like epigenetic signatures in exons displaying cell type-specific splicing

    No full text
    Background. Pre-mRNA splicing occurs mainly co-transcriptionally, and both nucleosome density and histone modifications have been proposed to play a role in splice site recognition and regulation. However, the extent and mechanisms behind this interplay remain poorly understood./nResults. We use transcriptomic and epigenomic data generated by the ENCODE project to investigate the association between chromatin structure and alternative splicing. We find a strong and significant positive association between H3K9ac, H3K27ac, H3K4me3, epigenetic marks characteristic of active promoters, and exon inclusion in a small but well-defined class of exons, representing approximately 4 % of all regulated exons. These exons are systematically maintained at comparatively low levels of inclusion across cell types, but their inclusion is significantly enhanced in particular cell types when in physical proximity to active promoters./nConclusion. Histone modifications and other chromatin features that activate transcription can be co-opted to participate in the regulation of the splicing of exons that are in physical proximity to promoter regions.We acknowledge support of the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208. JC was supported by a SFRH/BD/33535/2008 from the Portuguese Foundation to Science and Technology. CI was supported by a La Caixa predoctoral fellowship. Work in JV’s lab was supported by Fundación Botín, by Banco de Santander through its Santander Universities Global Division and by Consolider RNAREG, MINECO, and AGAUR. We thank Anshul Kundaje, Ben Brown, Michael Snyder, Thomas Gingeras, and Alberto Kornblihtt for useful discussions and access to data, and Romina Garrido for administrative assistance

    Erratum to: Promoter-like epigenetic signatures in exons displaying cell type-specific splicing

    No full text
    After the publication of this work [1] an error was noticed in Fig. 7. The panel‘h’ is missing from Fig. 7. Please see the corrected figure below. The publisher apologises for this error

    Absence of canonical marks of active chromatin in developmentally regulated genes

    Get PDF
    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.We thank the modENCODE project, the ENCODE Project (human and mouse data) and the Roadmap Epigenomics Mapping Consortium for granting open access of these resources to the scientific community. We also thank the Ultrasequencing Unit of the Centre for Genomic Regulation (CRG, Barcelona, Spain) for sample processing and the Confocal Unit of CCiTUB (Centres Científics i Tecnològics de la Universitat de Barcelona) (Universitat de Barcelona, Barcelona, Spain). This work was performed under the financial support of the Spanish Ministry of Economy and Competitiveness with grants BIO2011-26205 to R.G., CSD2007-00008 and BFU2012-36888 to M.C., and 'Centro de Excelencia Severo Ochoa 2013–2017', SEV-2012-0208 and the European Research Council/European Community's Seventh Framework Programme with grant 294653 RNA-MAPS to R.G. E.B. is supported by the European Commission's Seventh Framework Programme 4DCellFate grant 277899. J.C. is supported by grant SFRH/BD/33535/2008 from the Portuguese Foundation of Science and Technolog

    Absence of canonical marks of active chromatin in developmentally regulated genes

    No full text
    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.We thank the modENCODE project, the ENCODE Project (human and mouse data) and the Roadmap Epigenomics Mapping Consortium for granting open access of these resources to the scientific community. We also thank the Ultrasequencing Unit of the Centre for Genomic Regulation (CRG, Barcelona, Spain) for sample processing and the Confocal Unit of CCiTUB (Centres Científics i Tecnològics de la Universitat de Barcelona) (Universitat de Barcelona, Barcelona, Spain). This work was performed under the financial support of the Spanish Ministry of Economy and Competitiveness with grants BIO2011-26205 to R.G., CSD2007-00008 and BFU2012-36888 to M.C., and 'Centro de Excelencia Severo Ochoa 2013–2017', SEV-2012-0208 and the European Research Council/European Community's Seventh Framework Programme with grant 294653 RNA-MAPS to R.G. E.B. is supported by the European Commission's Seventh Framework Programme 4DCellFate grant 277899. J.C. is supported by grant SFRH/BD/33535/2008 from the Portuguese Foundation of Science and Technolog
    corecore