83 research outputs found

    Deterministic Brownian motion generated from differential delay equations

    Full text link
    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.Comment: 15 pages, 13 figure

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.

    Get PDF
    Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.Wellcome Trust Senior Investigator Award 106260/Z/14/Z HORIZON2020/European Research Council Consolidator Grant 64888

    Alterations in the human lung proteome with lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant human activated protein C (rhAPC) is associated with improved survival in high-risk patients with severe sepsis; however, the effects of both lipopolysaccharide (LPS) and rhAPC on the bronchoalveolar lavage fluid (BALF) proteome are unknown.</p> <p>Methods</p> <p>Using differential in gel electrophoresis (DIGE) we identified changes in the BALF proteome from 10 healthy volunteers given intrapulmonary LPS in one lobe and saline in another lobe. Subjects were randomized to pretreatment with saline or rhAPC.</p> <p>Results</p> <p>An average of 255 protein spots were detected in each proteome. We found 31 spots corresponding to 8 proteins that displayed abundance increased or decreased at least 2-fold after LPS. Proteins that decreased after LPS included surfactant protein A, immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, immunoglobulin, and α<sub>2</sub>-HS-glycoprotein. Haptoglobin increased after LPS-treatment. Treatment with rhAPC was associated with a larger relative decrease in immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, and α<sub>2</sub>-HS-glycoprotein.</p> <p>Conclusion</p> <p>Intrapulmonary LPS was associated with specific protein changes suggesting that the lung response to LPS is more than just a loss of integrity in the alveolar epithelial barrier; however, pretreatment with rhAPC resulted in minor changes in relative BALF protein abundance consistent with its lack of affect in ALI and milder forms of sepsis.</p

    Decadal soil carbon accumulation across Tibetan permafrost regions

    Get PDF
    Acknowledgements We thank the members of Peking University Sampling Teams (2001–2004) and IBCAS Sampling Teams (2013–2014) for assistance in field data collection. We also thank the Forestry Bureau of Qinghai Province and the Forestry Bureau of Tibet Autonomous Region for their permission and assistance during the sampling process. This study was financially supported by the National Natural Science Foundation of China (31670482 and 31322011), National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), Chinese Academy of Sciences-Peking University Pioneer Cooperation Team, and the Thousand Young Talents Program.Peer reviewedPostprintPostprin

    A depauperate immune repertoire precedes evolution of sociality in bees

    Get PDF
    Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts

    The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    Get PDF
    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed
    corecore