291 research outputs found

    Ozone as oxidation agent in cyclic activation of biochar

    Full text link
    Granular activated carbons were produced from grape seed biochar by cyclic activation with ozone. In each cycle, char was first oxidized by exposure to ozone and then subjected to high temperature in inert atmosphere to desorb oxygen groups formed. The study assessed the influence of operating conditions in the development of porosity, from a starting biochar with narrow microporosity (SBET: 47 m2 g− 1, SDA: 505 m2g− 1) prepared by flash pyrolysis of grape seed at 800 °C. The variables studied were the number of cycles applied and the oxidation and desorption temperatures (250–275 and 850–950 °C, respectively). High oxidation temperatures led to higher burn-off, which was also found to increase with the number of activation cycles. The burn-off needed to achieve a high surface area was lower than in conventional physical activation. After 7–9 activation cycles, activated carbons with SBET higher than 1200 m2 g− 1 and SDA above 1500 m2 g− 1 were obtained. The use of ozone resulted in mainly microporous activated carbons (0.37–0.52 cm3 g− 1) with very low contribution of mesopores (< 0.04–0.07 cm3 g− 1). The mean micropore size increased with the number of activation cycles due to pore widening, while mesopore mean size decreased along the cycles. The activated carbons showed a unique granular morphology with a hollow core and a porous shell, which is maintained even after 10 activation cyclesThe authors greatly appreciatefinancial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2012-32821

    Preparation of granular activated carbons from grape seeds by cycles of liquid phase oxidation and thermal desorption

    Full text link
    Activation of grape seed char upon successive cycles of liquid phase oxidation followed by high temperature desorption permits a tailored development of porosity. In this work three different oxidants (HNO3, H 2O2, and (NH4)2S2O 8), have been tested and the desorption temperature has been varied within 850-950 C upon 10 activation cycles. A high increase of BET surface area was observed in the first five cycles with HNO3 as oxidizing agent giving rise to values higher than 1200 m2 g- 1 at around 50% burn-off. Activation with H2O2 and (NH 4)2S2O8 led to a significantly lower development of surface area, with 600 and 800 m2 g- 1 respectively at that burn-off. The analysis of the pore size distribution showed that porosity was generated through the creation of new micropores and widening of existing ones upon activation with HNO3 and (NH4) 2S2O8, whereas H2O2 mostly led to the widening of the narrow micropores already existing in the starting char. The activated carbons obtained are essentially microporous, with some small contribution of mesoporosity in the HNO3 series (V micro = 0.69 cm3 g- 1; Vmeso = 0.07 cm3 g- 1). SEM images showed that the activated carbons maintained the granular morphology of the seeds after 10 cycles showing a hollow core structure with a wall thickness of about 200 μmThe authors greatly appreciate the financial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2009-09983

    Granular mesoporous activated carbons from waste tires by cyclic oxygen chemisorption-desorption

    Full text link
    This document is the accepted manuscript version of a published work that appeared in final form in Industrial and Engineering Chemistry Research, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/ie201499hActivation upon cyclic oxygen chemisorption-desorption has proved to be an efficient way to develop porosity at low burn off from waste tires char. In this work the influence of particle size, desorption temperature, and the number of cycles is studied. Highest values of burnoff and specific surface area (S BET) are obtained for the largest particle diameter (3 mm average) and at intermediate desorption temperature (650 °C). In these conditions S BET values around 500 m 2/g can be achieved at burn-offs of about 30%, and close to 600 m 2/g at around 45% burnoff, with a mean pore size of 10 nm and a micropore volume close to 0.08 cm 3/g. Although the surface area is moderate, the low burnoff and high S BET/burnoff ratio achieved make it possible to maintain initial granular morphology of the particles even after 20 cycles of activationWe greatly appreciate finantial support from the Spanish Ministerio de Educacion y Ciencia through the project CTQ2009-0998

    Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds

    Full text link
    This work studies the influence of the operating conditions used in the pyrolysis of grape seeds on the morphology and textural properties of the chars resulting. Flash and conventional (283Kmin-1 heating rate) pyrolysis have been used within a wide range of temperature (300-1000°C). The effect of a pretreatment for oil extraction has also been studied. The porous structure of the chars was characterized by adsorption of N2 at 77K, Ar at 77K and 87K, and CO2 at 273K and mercury intrusion porosimetry. The morphology was analyzed by scanning electron microscopy. All the materials prepared revealed an essentially microporous structure, with a poor or even negligible contribution of mesopores. Increasing pyrolysis temperature led to higher specific surface areas and lower pore size. The highest specific surface area values occurred within 700-800°C, reaching up to 500m2g-1 with pore sizes in the 0.4-1.1nm range. No significant morphological changes were observed upon carbonization so that the resulting chars were granular materials of similar size than the starting grape seeds. The hollow core structure of the chars, with most of the material allocated at the periphery of the granules can help to overcome the mass transfer limitations of most common (solid or massive) granular activated carbons. The chars showed a good mechanical strength during attrition tests. These chars can be potential candidates for the preparation of granular carbons molecular sieve or activated carbons raw materialsThe authors greatly appreciate financial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2009-09983

    Influence of Large Periods of DC Current Injection in c-Si Photovoltaic Panels

    Get PDF
    Nowadays, electroluminescence imaging (Eli) appears as an emerging technique in the maintenance of photovoltaic (PV) plants. There is a concern about how the current injection needed in ELi measurements can affect the PV modules service life, and how these periodical inspections can affect the long term life of the modules. In order to give a practical answer to this problem, a series of tests consisting of long periods of current injection on several monocrystalline silicon modules has been carried out. The modules tested had already fulfilled their useful life and present multiple defects. In order to analyze how the current injection affects the state of the module, images of infrared thermography (IRT) and ELi were acquired during the current injection period. The subsequent analysis of these images shows only a small effect during the heating period in the EL intensity results at the beginning of each test, not affecting the module performance.Proyecto de Investigación ENE2017-89561-C4-3-R (MCIN)Proyecto de Investigación RTC-2017-6712-3 (MCIN)Proyecto de Investigación VA283P18 (Junta de Castilla y León

    Biomass-Derived Microporous Carbon Materials with an Open Structure of Cross-Linked Sub-microfibers with Enhanced Adsorption Characteristics

    Full text link
    This document is the accepted manuscript version of a published work that appeared in final form in Energy and Fuels, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.6b02112Moringa oleifera seed shells exhibit a unique structure of cross-linked sub-microfibers (0.5-1.5 μm diameter) with a well-connected macroporous network. Controlled pyrolysis (500-800 °C) and cyclic activation of the precursor provided a porous carbon material with a structure that minimizes mass-transfer constraints. Under both slow (10 °C/min-1) and flash pyrolysis, the structure was preserved, while a significant microporosity was developed. By flash pyrolysis (700-800 °C), a material with enhanced characteristics for potential application as a molecular sieve (SDA = 450-470 m2 g-1, and SBET = 5 m2 g-1) was obtained. Cyclic activation of carbonized shells, consisting of an oxygen chemisorption stage (180 °C) followed by a desorption stage in an inert atmosphere (450-900 °C), resulted in a controlled development of microporosity upon successive activation cycles. After 10 activation cycles, respective SDA and SBET values of 1172 and 761 m2 g-1 were obtained. Higher development of the surface area and a wider distribution of micropores was observed when the desorption stage was carried out at 900 °C. The development of the surface area was achieved at low burnoff (22-33%), thus preserving the structure of the material. Thanks to its unique structure, the material obtained exhibited enhanced characteristics for gas sorption as a result of diminished mass-transfer limitations, assessed through the kinetics of carbon dioxide adsorption runs at ambient conditionsThe authors greatly appreciate financial support from the Spanish Ministerio de Economía y Competitividad (CTQ2012-32821

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Risk factors and outcome of COVID-19 in patients with hematological malignancies

    Get PDF
    Background: Prognostic factors of poor outcome in patients with hematological malignancies and COVID-19 are poorly defned. Patients and methods: This was a Spanish transplant group and cell therapy (GETH) multicenter retrospective observational study, which included a large cohort of blood cancer patients with laboratory-confrmed SARS-CoV-2 infection through PCR assays from March 1st 2020 to May 15th 2020. Results: We included 367 pediatric and adult patients with hematological malignancies, including recipients of autologous (ASCT) (n=58) or allogeneic stem cell transplantation (allo-SCT) (n=65) from 41 hospitals in Spain. Median age of patients was 64 years (range 1-93.8). Recipients of ASCT and allo-SCT showed lower mortality rates (17% and 18%, respectively) compared to non-SCT patients (31%) (p=0.02). Prognostic factors identifed for day 45 overall mortality (OM) by logistic regression multivariate analysis included age>70 years [odds ratio (OR) 2.1, 95% con‑ fdence interval (CI) 1.2-3.8, p=0.011]; uncontrolled hematological malignancy (OR 2.9, 95% CI 1.6-5.2, p20 mg/dL (OR 3.3, 95% CI 1.7-6.4, p<0.0001). In multivariate analysis of 216 patients with very severe COVID-19, treatment with azithromycin or low dose corticosteroids was associated with lower OM (OR 0.42, 95% CI 0.2-0.89 and OR 0.31, 95% CI 0.11-0.87, respectively, p=0.02) whereas the use of hidroxycloroquine did not show signifcant improvement in OM (OR 0.64, 95% CI 0.37-1.1, P=0.1). Conclusions: In most patients with hematological malignancies COVID-19 mortality was directly driven by older age, disease status, performance status, as well as by immune (neutropenia) parameters and level of infammation (high CRP). Use of azithromycin and low dose corticosteroids may be of value in very severe COVID-19

    Comparison of seven prognostic tools to identify low-risk pulmonary embolism in patients aged <50 years

    Get PDF
    publishersversionPeer reviewe
    corecore