3,250 research outputs found

    Can complex networks describe the urban and rural tropospheric O3 dynamics?

    Full text link
    Tropospheric ozone (O3) time series have been converted into complex networks through the recent so-called Visibility Graph (VG), using the data from air quality stations located in the western part of Andalusia (Spain). The aim is to apply this novel method to differentiate the behavior between rural and urban regions when it comes to the ozone dynamics. To do so, some centrality parameters of the resulting complex networks have been investigated: the degree, betweenness and shortest path. Some of them are expected to corroborate previous works in order to support the use of this technique; while others to supply new information. Results coincide when describing the difference that tropospheric ozone exhibits seasonally and geographically. It is seen that ozone behavior is fractal, in accordance to previous works. Also, it has been demonstrated that this methodology is able to characterize the divergence encountered between measurements in urban environments and countryside. In addition to that, the promising outcomes of this technique support the use of complex networks for the study of air pollutants dynamics. Particularly, new nuances are offered such as the identification and description of singularities in the signal.Comment: 27 pages, 7 figures, 1 graphical abstrac

    Multiplex Visibility Graphs as a complementary tool for describing the relation between ground level O3 and NO2

    Full text link
    The usage of multilayer complex networks for the analysis of correlations among environmental variables (such as O3 and NO2 concentrations from the photochemical smog) is investigated in this work. The mentioned technique is called Multiplex Visibility Graphs (MVG). By performing the joint analysis of those layers, the parameters named Average Edge Overlap and Interlayer Mutual Information are extracted, which accounts for the microscopical time coherence and the correlation between the time series behavior, respectively. These parameters point to the possibility of using them independently to describe the correlation between atmospheric pollutants (which could be extended to environmental time series). More precisely the first one of them is considered to be a potential new approach to determine the time required for the correlation of NO2 and O3 to be observed, since it is obtained from the correlation of the pollutants at the smallest time scale. As for the second one, it has been checked that the proposed technique can be used to describe the variation of the correlation between the two gases along the seasons. In short, MVGs parameters are introduced and results show that they could be potentially used in a future for correlation studies, supplementing already existing techniques.Comment: 29 pages, 7 figure

    Nonsense-Mediated mRNA Decay Modulates Immune Receptor Levels to Regulate Plant Antibacterial Defense

    Get PDF
    SummaryNonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways

    Control of nuclear beta-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function

    Get PDF
    β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity

    Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

    Get PDF
    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.</p

    The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Full text link
    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.Comment: 16 pages, 10 figures. Accepted for publication in ApJS. See Marriage et al. (arXiv:1010.1065) and Menanteau et al. (arXiv:1006.5126) for additional cluster result

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    Herschel-ATLAS: Multi-wavelength SEDs and physical properties of 250 micron-selected galaxies at z < 0.5

    Get PDF
    We present a pan-chromatic analysis of an unprecedented sample of 1402 250 micron-selected galaxies at z < 0.5 (mean z = 0.24) from the Herschel-ATLAS survey. We complement our Herschel 100-500 micron data with UV-K-band photometry from the Galaxy And Mass Assembly (GAMA) survey and apply the MAGPHYS energy-balance technique to produce pan-chromatic SEDs for a representative sample of 250 micron selected galaxies spanning the most recent 5 Gyr of cosmic history. We derive estimates of physical parameters, including star formation rates, stellar masses, dust masses and infrared luminosities. The typical H-ATLAS galaxy at z < 0.5 has a far-infrared luminosity in the range 10^10 - 10^12 Lsolar (SFR: 1-50 Msolar/yr) thus is broadly representative of normal star forming galaxies over this redshift range. We show that 250 micron-selected galaxies contain a larger mass of dust at a given infra-red luminosity or star formation rate than previous samples selected at 60 micron from IRAS. We derive typical SEDs for H-ATLAS galaxies, and show that the emergent SED shape is most sensitive to specific star formation rate. The optical-UV SEDs also become more reddened due to dust at higher redshifts. Our template SEDs are significantly cooler than existing infra-red templates. They may therefore be most appropriate for inferring total IR luminosities from moderate redshift submillimetre selected samples and for inclusion in models of the lower redshift submillimetre galaxy populations.Comment: 26 pages, 24 figures, Accepted by MNRA

    Missing effects of zinc in a porcine model of recurrent endotoxemia

    Get PDF
    BACKGROUND: Chronic human sepsis often is characterised by the compensatory anti-inflammatory response syndrome (CARS). During CARS, anti-inflammatory cytokines depress the inflammatory response leading to secondary and opportunistic infections. Proved in vitro as well as in vivo, zinc's pro-inflammatory effect might overcome this depression. METHODS: We used the model of porcine LPS-induced endotoxemia established by Klosterhalfen et al. 10 pigs were divided into two groups (n = 5). Endotoxemia was induced by recurrent intravenous LPS-application (1.0 μg/kg E. coli WO 111:B4) at hours 0, 5, and 12. At hour 10, each group received an intravenous treatment (group I = saline, group II = 5.0 mg/kg elementary zinc). Monitoring included hemodynamics, blood gas analysis, and the thermal dilution technique for the measurement of extravascular lung water and intrapulmonary shunt. Plasma concentrations of IL-6 and TNF-alpha were measured by ELISA. Morphology included weight of the lungs, width of the alveolar septae, and rate of paracentral liver necrosis. RESULTS: Zinc's application only trended to partly improve the pulmonary function. Compared to saline, significant differences were very rare. IL-6 and TNF-alpha were predominately measured higher in the zinc group. Again, significance was only reached sporadically. Hemodynamics and morphology revealed no significant differences at all. CONCLUSION: The application of zinc in this model of recurrent endotoxemia is feasible and without harmful effects. However, a protection or restoration of clinical relevance is not evident in our setting. The pulmonary function just trends to improve, cytokine liberation is only partly activated, hemodynamics and morphology were not influenced. Further pre-clinical studies have to define zinc's role as a therapeutic tool during CARS
    corecore