401 research outputs found
Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements
We present new determinations of the cosmic expansion history from
red-envelope galaxies. We have obtained for this purpose high-quality spectra
with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters
in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with
high-quality, publicly available archival spectra from the SPICES and VVDS
surveys. We improve over our previous expansion history measurements in Simon
et al. (2005) by providing two new determinations of the expansion history:
H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z =
0.8. We discuss the uncertainty in the expansion history determination that
arises from uncertainties in the synthetic stellar-population models. We then
use these new measurements in concert with cosmic-microwave-background (CMB)
measurements to constrain cosmological parameters, with a special emphasis on
dark-energy parameters and constraints to the curvature. In particular, we
demonstrate the usefulness of direct H(z) measurements by constraining the
dark- energy equation of state parameterized by w0 and wa and allowing for
arbitrary curvature. Further, we also constrain, using only CMB and H(z) data,
the number of relativistic degrees of freedom to be 4 +- 0.5 and their total
mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA
Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds
A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world
The Void Abundance with Non-Gaussian Primordial Perturbations
We use a Press-Schechter-like calculation to study how the abundance of voids
changes in models with non-Gaussian initial conditions. While a positive
skewness increases the cluster abundance, a negative skewness does the same for
the void abundance. We determine the dependence of the void abundance on the
non-Gaussianity parameter fnl for the local-model bispectrum-which approximates
the bispectrum in some multi-field inflation models-and for the equilateral
bispectrum, which approximates the bispectrum in e.g. string-inspired DBI
models of inflation. We show that the void abundance in large-scale-structure
surveys currently being considered should probe values as small as fnl < 10 and
fnl^eq < 30, over distance scales ~10 Mpc.Comment: Submitted to JCA
The AOLI low-order non-linear curvature wavefront sensor: a method for high sensitivity wavefront reconstruction
The Adaptive Optics Lucky Imager (AOLI) is a new instrument under development
to demonstrate near diffraction limited imaging in the visible on large
ground-based telescopes. We present the adaptive optics system being designed
for the instrument comprising a large stroke deformable mirror, fixed component
non-linear curvature wavefront sensor and photon-counting EMCCD detectors. We
describe the optical design of the wavefront sensor where two photoncounting
CCDs provide a total of four reference images. Simulations of the optical
characteristics of the system are discussed, with their relevance to low and
high order AO systems. The development and optimisation of high-speed wavefront
reconstruction algorithms are presented. Finally we discuss the results of
simulations to demonstrate the sensitivity of the system.Comment: 10 pages. To be published in Proc SPIE 8447: Adaptive Optics Systems
II
Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells
Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins
Clinical Validation of a 3-Dimensional Ultrafast Cardiac Magnetic Resonance Protocol Including Single Breath-Hold 3-Dimensional Sequences
Objectives: This study sought to clinically validate a novel 3-dimensional (3D) ultrafast cardiac magnetic resonance (CMR) protocol including cine (anatomy and function) and late gadolinium enhancement (LGE), each in a single breath-hold.
Background: CMR is the reference tool for cardiac imaging but is time-consuming.
Methods: A protocol comprising isotropic 3D cine (Enhanced sensitivity encoding [SENSE] by Static Outer volume Subtraction [ESSOS]) and isotropic 3D LGE sequences was compared with a standard cine+LGE protocol in a prospective study of 107 patients (age 58 ± 11 years; 24% female). Left ventricular (LV) mass, volumes, and LV and right ventricular (RV) ejection fraction (LVEF, RVEF) were assessed by 3D ESSOS and 2D cine CMR. LGE (% LV) was assessed using 3D and 2D sequences.
Results: Three-dimensional and LGE acquisitions lasted 24 and 22 s, respectively. Three-dimensional and LGE images were of good quality and allowed quantification in all cases. Mean LVEF by 3D and 2D CMR were 51 ± 12% and 52 ± 12%, respectively, with excellent intermethod agreement (intraclass correlation coefficient [ICC]: 0.96; 95% confidence interval [CI]: 0.94 to 0.97) and insignificant bias. Mean RVEF 3D and 2D CMR were 60.4 ± 5.4% and 59.7 ± 5.2%, respectively, with acceptable intermethod agreement (ICC: 0.73; 95% CI: 0.63 to 0.81) and insignificant bias. Both 2D and 3D LGE showed excellent agreement, and intraobserver and interobserver agreement were excellent for 3D LGE.
Conclusions: ESSOS single breath-hold 3D CMR allows accurate assessment of heart anatomy and function. Combining ESSOS with 3D LGE allows complete cardiac examination in less than 1 min of acquisition time. This protocol expands the indication for CMR, reduces costs, and increases patient comfort. (J Am Coll Cardiol Img 2021;14:1742–1754)Funding included Instituto de Salud Carlos III (ISCIII) and the
European Regional Development Fund (ERDF) Grants DTS17/00136 to
Dr. Ibáñez and PI19/01704 to Dr. Fernandez-Jimenez; Spanish Society
of Cardiology Translational Research Grant 2016 to Dr. Ibáñez;
European Research Council ERC-CoG 819775-MATRIX to Dr. Ibáñez;
Comunidad de Madrid S2017/BMD-3867-RENIM-CM to Drs. Desco
and Ibáñez; and Ministerio de Ciencia e Innovación (MICINN)
RETOS2019-107332RB-I00 to Dr. Ibáñez. Dr. Fernandez-Jimenez received funding from the European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Hrant
Agreement No. 707642. The CNIC is supported by the ISCIII, the
MICINN, and the Pro CNIC Foundation. Drs. Fernandez-Jimenez,
Nothnagel, Fuster, Ibáñez, and Javier Sánchez-González are inventors
of a joint patent (Philips/CNIC) for the new cine imaging
method here described and validated/protected under the IP
#2014P00960EP. Drs. Nothnagel, Kouwenhoven, Clemence, and
Javier Sánchez-González are Philips employees. All other authors
have reported that they have no relationships relevant to the contents
of this paper to disclose
Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination
- …