101 research outputs found

    The Elements: Transforming Teaching through Curriculum-Based Professional Learning

    Get PDF
    The Elements: Transforming Teaching through Curriculum-Based Professional Learning is a Challenge Paper from Carnegie Corporation of New York that explores how professional learning anchored in high-quality curriculum materials can allow teachers to experience instruction as their students will, change instructional practices, and lead to better student outcomes

    Integrated planning and scheduling for Earth science data processing

    Get PDF
    Several current NASA programs such as the EOSDIS Core System (ECS) have data processing and data management requirements that call for an integrated planning and scheduling capability. In this paper, we describe the experience of applying advanced scheduling technology operationally, in terms of what was accomplished, lessons learned, and what remains to be done in order to achieve similar successes in ECS and other programs. We discuss the importance and benefits of advanced scheduling tools, and our progress toward realizing them, through examples and illustrations based on ECS requirements. The first part of the paper focuses on the Data Archive and Distribution (DADS) V0 Scheduler. We then discuss system integration issues ranging from communication with the scheduler to the monitoring of system events and re-scheduling in response to them. The challenge of adapting the scheduler to domain-specific features and scheduling policies is also considered. Extrapolation to the ECS domain raises issues of integrating scheduling with a product-generation planner (such as PlaSTiC), and implementing conditional planning in an operational system. We conclude by briefly noting ongoing technology development and deployment projects being undertaken by HTC and the ISTB

    Comparison of photosynthetic performance of Fagus sylvatica seedlings under natural and artificial shading

    Get PDF
    peer-reviewedCommitment to sustainable forest management (alternatives to clearfelling) has led to a renewed interest in continuous cover forestry systems, which promote the control of light to produce stand benefits. Physiological performance of shade-tolerant European beech (Fagus sylvatica L.) in response to light availability was investigated in natural regeneration below the canopy in contrast to planted seedlings under artificial-shade conditions. Although beech seedlings had higher photosynthetic capacity with increasing light availability, they were able to maintain positive CO2 assimilation rates under low light levels in both field and controlled conditions. Leaves of seedlings under low light had the ability to use light more efficiently (higher PSII efficiency) than those in high light, which offer some physiological explanation for the ability of beech seedlings to grow under very low light conditions. Whilst caution is advised to interpret results from controlled to field studies, the overall general correspondence in the trend of the physiological response to light levels within beech grown below the canopy and under artificial-shade conditions suggests that it might be possible to extrapolate results from studies performed under artificial shade (nets) to field conditions. Hence, the use of nets may be an alternative way of assessing the potential physiological responses of seedlings to light availability.This research was funded by the COFORD Forest Research Programme under the 2007–2013 National Development Plan, administered by the Irish Department of Agriculture, Food and the Marine (DAFM). Ignacio Sevillano was supported by a Walsh Fellowship from Teagasc (Ireland)

    Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings

    Get PDF
    peer-reviewedThe survival, morphological, and growth responses of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) seedlings to different light intensities, from full sunlight to heavy shade, were studied over two growing seasons in a shadehouse experiment. Although shade treatments significantly affected seedling growth, they did not influence seedling survival. Both growth and biomass increased as light intensity increased. Diameter growth of oak seedlings was higher than that of beech. Beech and oak seedlings showed typical acclimation to shade, including greater specific leaf area and height to diameter ratios, and lower leaf thickness and root:shoot ratios with increasing shade. Beech seedlings exhibited greater specific leaf area, and lower leaf thickness and root:shoot ratios than oak seedlings. In spite of the greater growth at full sunlight, the results from this study suggest that beech and oak seedlings would have high survival rates and would acclimate well if underplanted below overstories that reduce the available light to as low as 28% of full light

    Paleobiology of a Large Mammal Community From the Late Pleistocene of Sonora, Mexico

    Get PDF
    A paleontological deposit near San Clemente de Térapa represents one of the very few Rancholabrean North American Land Mammal Age sites within Sonora, Mexico. During that time, grasslands were common, and the climate included cooler and drier summers and wetter winters than currently experienced in northern Mexico. Here, we demonstrate restructuring in the mammalian community associated with environmental change over the past 40,000 years at Térapa. The fossil community has a similar number of carnivores and herbivores whereas the modern community consists mostly of carnivores. There was also a 97% decrease in mean body size (from 289 kg to 9 kg) because of the loss of megafauna. We further provide an updated review of ungulates and carnivores, recognizing two distinct morphotypes of Equus, including E. scotti and a slighter species; as well as Platygonus compressus; Camelops hesternus; Canis dirus; and Lynx rufus; and the first regional records of Palaeolama mirifica, Procyon lotor, and Smilodon cf. S. fatalis. The Térapa mammals presented here provide a more comprehensive understanding of the faunal community restructuring that occurred in northern Mexico from the late Pleistocene to present day, indicating further potential biodiversity loss with continued warming and drying of the region

    Effects of dredging-related pressures on critical ecological processes for organisms other than fish or coral. Report of Theme 9 - Project 9.1 prepared for the Dredging Science Node

    Get PDF
    In November 2013 a workshop was held at CSIRO Floreat, which brought together national and international marine scientists. The workshop addressed two primary objectives: • identify the timing of critical ecological processes in tropical and temperate ecosystems with a focus on non-coral and non-fish biota (seagrass, seaweed, sponges, ascidians, bryozoans, molluscs, echinoderms, crustaceans and non-coral cnidarians); and • identify environmental windows for critical ecological processes identified in Objective 1. This will be achieved by compiling information on the timing of reproduction, release of propagules and recruitment for these organisms, as well as the temporal and spatial scales of reproduction and recruitment events. During Workshop 1 a conceptual diagram was developed to illustrate and guide the decision process behind the selection of environmental windows (EWs) (see Figure 1). The life histories of the biota investigated were then identified and listed in detailed tables with specific reference to potential effects of dredging at each life history stage..

    Federated Identity Management for Research Collaborations

    Get PDF
    This white-paper expresses common requirements of Research Communities seeking to leverage Identity Federation for Authentication and Authorisation. Recommendations are made to Stakeholders to guide the future evolution of Federated Identity Management in a direction that better satisfies research use cases. The authors represent research communities, Research Services, Infrastructures, Identity Federations and Interfederations, with a joint motivation to ease collaboration for distributed researchers. The content has been edited collaboratively by the Federated Identity Management for Research (FIM4R) Community, with input sought at conferences and meetings in Europe, Asia and North America

    The Marine Viromes of Four Oceanic Regions

    Get PDF
    Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure

    Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats

    Get PDF
    Management and technical approaches that achieve a sustainable level of fish production while at the same time minimizing or limiting the wider ecological effects caused through fishing gear contact with the seabed might be considered to be ‘best practice’. To identify future knowledge-needs that would help to support a transition towards the adoption of best practices for trawling, a prioritization exercise was undertaken with a group of 39 practitioners from the seafood industry and management, and 13 research scientists who have an active research interest in bottom-trawl and dredge fisheries. A list of 108 knowledge-needs related to trawl and dredge fisheries was developed in conjunction with an ‘expert task force’. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge-need. The top 25 knowledge-needs are presented, as scored separately by practitioners and scientists. There was considerable consistency in the priorities identified by these two groups. The top priority knowledge-need to improve current understanding on the distribution and extent of different habitat types also reinforced the concomitant need for the provision and access to data on the spatial and temporal distribution of all forms of towed bottom-fishing activities. Many of the other top 25 knowledge-needs concerned the evaluation of different management approaches or implementation of different fishing practices, particularly those that explore trade-offs between effects of bottom trawling on biodiversity and ecosystem services and the benefits of fish production as food.Fil: Kaiser, Michel J.. Bangor University; Reino UnidoFil: Hilborn, Ray. University of Washington; Estados UnidosFil: Jennings, Simon. Fisheries and Aquaculture Science; Reino UnidoFil: Amaroso, Ricky. University of Washington; Estados UnidosFil: Andersen, Michael. Danish Fishermen; DinamarcaFil: Balliet, Kris. Sustainable Fisheries Partnership; Estados UnidosFil: Barratt, Eric. Sanford Limited; Nueva ZelandaFil: Bergstad, Odd A. Institute of Marine Research; NoruegaFil: Bishop, Stephen. Independent Fisheries Ltd; Nueva ZelandaFil: Bostrom, Jodi L. Marine Stewardship Council; Reino UnidoFil: Boyd, Catherine. Clearwater Seafoods; CanadáFil: Bruce, Eduardo A. Friosur S.A.; ChileFil: Burden, Merrick. Marine Conservation Alliance; Estados UnidosFil: Carey, Chris. Independent Fisheries Ltd.; Estados UnidosFil: Clermont, Jason. New England Aquarium; Estados UnidosFil: Collie, Jeremy S. University of Rhode Island,; Estados UnidosFil: Delahunty, Antony. National Federation of Fishermen; Reino UnidoFil: Dixon, Jacqui. Pacific Andes International Holdings Limited; ChinaFil: Eayrs, Steve. Gulf of Maine Research Institute; Estados UnidosFil: Edwards, Nigel. Seachill Ltd.; Reino UnidoFil: Fujita, Rod. Environmental Defense Fund; Reino UnidoFil: Gauvin, John. Alaska Seafood Cooperative; Estados UnidosFil: Gleason, Mary. The Nature Conservancy; Estados UnidosFil: Harris, Brad. Alaska Pacific University; Estados UnidosFil: He, Pingguo. University of Massachusetts Dartmouth; Estados UnidosFil: Hiddink, Jan G. Bangor University; Reino UnidoFil: Hughes, Kathryn M. Bangor University; Reino UnidoFil: Inostroza, Mario. EMDEPES; ChileFil: Kenny, Andrew. Fisheries and Aquaculture Science; Reino UnidoFil: Kritzer, Jake. Environmental Defense Fund; Estados UnidosFil: Kuntzsch, Volker. Sanford Limited; Estados UnidosFil: Lasta, Mario. Diag. Montegrande N° 7078. Mar del Plata; ArgentinaFil: Lopez, Ivan. Confederacion Española de Pesca; EspañaFil: Loveridge, Craig. South Pacific Regional Fisheries Management Organisation; Nueva ZelandaFil: Lynch, Don. Gorton; Estados UnidosFil: Masters, Jim. Marine Conservation Society; Reino UnidoFil: Mazor, Tessa. CSIRO Marine and Atmospheric Research; AustraliaFil: McConnaughey, Robert A. US National Marine Fisheries Service; Estados UnidosFil: Moenne, Marcel. Pacificblu; ChileFil: Francis. Marine Scotland Science; Reino UnidoFil: Nimick, Aileen M. Alaska Pacific University; Estados UnidosFil: Olsen, Alex. A. Espersen; DinamarcaFil: Parker, David. Young; Reino UnidoFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Penney, Christine. Clearwater Seafoods; CanadáFil: Pierce, David. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Pitcher, Roland. CSIRO Marine and Atmospheric Research; AustraliaFil: Pol, Michael. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Richardson, Ed. Pollock Conservation Cooperative; Estados UnidosFil: Rijnsdorp, Adriaan D. Wageningen IMARES; Países BajosFil: Rilatt, Simon. A. Espersen; DinamarcaFil: Rodmell, Dale P. National Federation of Fishermen's Organisations; Reino UnidoFil: Rose, Craig. FishNext Research; Estados UnidosFil: Sethi, Suresh A. Alaska Pacific University; Estados UnidosFil: Short, Katherine. F.L.O.W. Collaborative; Nueva ZelandaFil: Suuronen, Petri. Fisheries and Aquaculture Department; ItaliaFil: Taylor, Erin. New England Aquarium; Estados UnidosFil: Wallace, Scott. The David Suzuki Foundation; CanadáFil: Webb, Lisa. Gorton's Inc.; Estados UnidosFil: Wickham, Eric. Unit four –1957 McNicoll Avenue; CanadáFil: Wilding, Sam R. Monterey Bay Aquarium; Estados UnidosFil: Wilson, Ashley. Department for Environment; Reino UnidoFil: Winger, Paul. Memorial University Of Newfoundland; CanadáFil: Sutherland, William J. University of Cambridge; Reino Unid

    A Mouse Model of Acrodermatitis Enteropathica: Loss of Intestine Zinc Transporter ZIP4 (Slc39a4) Disrupts the Stem Cell Niche and Intestine Integrity

    Get PDF
    Loss-of-function of the zinc transporter ZIP4 in the mouse intestine mimics the lethal human disease acrodermatitis enteropathica. This is a rare disease in humans that is not well understood. Our studies demonstrate the paramount importance of ZIP4 in the intestine in this disease and reveal that a root cause of lethality is disruption of the intestine stem cell niche and impaired function of the small intestine. This, in turn, leads to dramatic weight loss and death unless treated with exogenous zinc
    corecore