
Integrated Planning and Scheduling
for Earth Science Data Processing

Mark Boddy 31m White Robert Goldmmm

Honeywell Technology Center (HTC)
MN65-2200, 3660 Technology Drive

Minneapolis, MN 55418
{e+2-.s+- 740s I 73. I 73ss} r-- s+2-.S -T4ae

{boddy J jghite I goldaan}esrc.honeywell, con

Nick Short, Jr.
ISTB, Code 935

NASA Goddard Space Flight Center
Greenbelt, MD 20771

{ shortedunloggin, gsfc. nasa. gov}

N95- 27382

p. //

Abstract

Several current NASA programs such as the
EOSDIS Core System (ECS) have data pro-

ceasing and data management requirements

that call for an integrated planning and
_ .scJ_duling capability. As we have shown in

previous work, the scale and complexity of

data ingest and product generation for ECS
will overwhelm the capabilities of manual

planning and scheduling procedures. Meet-

ing this challenge requires the innovative ap-
plication of advanced technology. Some of

our work on developing this technology was
described in a paper presented at the 1994

Goddard AI Conference, in which we talked

about advanced planning and scheduling ca-
pabilities for product generation. We are now

moving to deploy some of the technology we
have developed for operational use.

We have implemented a constraint-based
task and resource scheduler for the GSFC

Version 0 (V0) Distributed Active Archive

Center (DAAC) requirements. This sched-

uler, developed by Honeywell Technology
Center in cooperation with the Information

Science and Technology Branch and with the
V0 DAAC, makes efficient use of limited re-

sources, prevents backlog of data, and pro-
rides information about resource bottlenecks

and performance characteristics. It handles

resource contention, prevents deadlocks, and
makes decisions based on a set of defined

policies. The scheduler efficiently supports

schedule updates, insertions, and retrieval of

task information. It has a graphical inter-

face that is updated dynamically as new tasks

arrive or existing tasks are completed. The
kernel scheduling engine, called Kronos, has
been succe_fully applied to several other do-

mains such as space shuttle mission schedul-

ing, demand flow manufacturing, and avion-

ics communications scheduling. Kronos has

been successfully applied to scheduling prob-
lems involving 20,000 tasks and 140,000 con-

straints, with interactive response times for
schedule modification on the order of a few
seconds on a SPARC10.

In this paper, we describe the experience

of applying advanced scheduling technology
operationally, in terms of what was accom-

plished, lessons learned, and what remains
to be done in order to achieve similar suc-

cesses in ECS and other programs. We dis-

cuss the importance and benefits of advanced

scheduling tools, and our progress toward re-
alizing them, through examples and illustr_-

-- tions based on ECS requirements. The first
: part of the paper focuses on the Data Archive

- and Distribution (DADS) V0 Scheduler de-
scribed above. We then discuss system in-

tegration issues ranging from communication

with the scheduler to the monitoring of sys-

tem events and re-scheduling in response to
them. The challenge of adapting the sched-

uler to domain-specific features and schedul-
ing policies is also considered. Extrapolation

to the ECS domain raises issues of integrating

scheduling with a product-generation planner
(such as PlaSTiC), and implementing con-

: ditional planning in an operational system.

_ We conclude by briefly noting ongoing tech-

nology development and deployment projects
being undertaken by HTC and the ISTB.

PRECEDING PAGE BLANK NOT FILMED

91

https://ntrs.nasa.gov/search.jsp?R=19950020961 2020-06-16T07:14:43+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42781196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

m

"• Planner/
Scheduler

Product
Generation ktetadata

Extraction

Mass Storage ObJect
Database

Intelligent
User Interface

Figure 1: The IIFS

1 Introduction

In both joint and separate work at NASA's Goddard
Space Flight Center and the Honeywell Technology

Center, we have been working on automating the ac-

quisition, initial processing, indexing, archiving, anal-

ysis, and retrieval of satellite earth science data, with

particular attention to the processing taking place at
the DAACs.

After descr|bing our motivation in section 2 and re-
la_ work in secti0n 2.1 and section 3 we focus on

the DADS V0 Scheduler. In section 4 we present gen-

eral scheduling requirements initially derived from the

DADS application, but extended to encompass simi-
lar NASA instrument processing such as the Clouds

and Earth's Radiant Energy System (CERE_ and

the Moderate Resolution Imaging Spectroradiometer

(MODIS). Then, we describe the implementation and
operation of the prototype DADS V0 Scheduler with

particular attention to lessons learned that have en-

hanced its generality and reusability for other appli-
cations. We conclude with a short summary of our

conclusions and plans for future work.

2 Motivation

whelm human managers.

It is not sufficient to simply plan and schedule the re-
quired activities. These decisions inherently model the

target system. Even when this model is made highly

detailed, it can never capture all of the details and poe-

sible future behaviors of an actual system. Scheduled

activities will require more or less time than scheduled.

Requests will arrive unexpectedly. Resources will be

unavailable or will fail during use. Efficient ope_.ation
and resource utilization requires thai execution must
be monitored and future activities rescheduled in re-

sponse to real world events.

Hence, the overall advantages for using scheduling in-
clude:

• automation of routine operations,

• timely delivery of data products,

• efficient use of computational r_urces.

Satisfaction of these requirements will lead to reduc-

tion in staff, use of cheaper hardware, and user satis-

faction. These principles are being applied to both the

Intelligent Information Fusion System (IIFS) and the
DADS in the next sections.

Management of complex systems requires skill in a
variety of disciplines. Two critical management dis-

ciplines involve deciding what activities to perform,

which we call planning, and deciding when those ac-
tivities should be performed, which we call scheduling.

In large systems such as ECS these functions must be

automated, since the sheer volume of data will over-

2.1 Intelligent Information Fusion

Since 1989, the IIFS is an prototype system for test-

ing advanced technologies for processing, archiving,

and retrieval of remote sensing imagery. The IIFS is

currently being applied to the next generation direct-

readout domain, whereby data are received from the

92

........ 1.2 ---

i . m

: ' 0.70

Figure 2: A Simple Problem with Duration and Partial
Orders

direct broadcast from orbiting platforms for the re-

gion encompassing the acquisition and loss of the
spacecraft's signal. These inexpensive ground sys-
tems are used for weather forecasting in remote areas

of the world, collection of in sifu data, and calibra-

tion/validation of sensor data to name a few.

The planning/scheduling portion of the IIFS is used

to manage the production pipeline. Essentially, the
planner/scheduler sacrifies accuracy for time in gener-

ating the data product. That is, if enough time and
resources exist, then the planner/scheduler generates

the normal data product, called a standard product

in the EOS nomenclature. If not, then the planner

substitutes computationally cheaper algorithms until
resource constraints can be met. The result is called

a browse product and is used soley by the scientists

during the data selection phase. Should the scien-
tist decide that greater accuracy is required, then the

plan can be regenerated under less computationally
constrained circumstances. This may, for example, in-

volve issuing a request to EOSDIS' DADS if the direct-

readout center is incapable of handling the request.

During the past few years, several planner/schedulers
have been tested in this domain. The next section

briefly discusses only one of these planners, called
PlaSTiC.

3 PlaSTiC

PlaSTiC (Planning and Scheduling Tool implemented

using Constraints) is an automated planning tool de-

signed to automatically generate of complex plans.
PlaSTiC was developed as a prototype for the genera-

tion image analysis plans (browse products and scien-

tific data) in the EOSDIS domain.

A typical plan might detail the processing steps to be

taken to clean up, register, classify, and extract fea-

tures from a given image. Plan steps will be executed
in a resource-limited environment, competing for such

resources as processing time, disk space, and the use

of archive servers to retrieve data from long-term m_m

_rage. Choices of these algorithnm depends on the

type of satellite, region of the country, computation
characteristics (e.g., deadline, resource requirement,

etc.).

PlasTiC is an integration of hierarchical planning and
constraint-based scheduling. TMM provides the b_il

for temporal reasoning and constraints. The planning
component is based on an implementation of NON-

LIN developed at the University of Maryland. PlaS-

TiC extends NONLIN-style planning to include rea-

soning about durations and deadlines.

The schemas used by PlasTiC, which ate ba_d on

NONLIN's Task Formalism (TF), have been extended
to record information about the estimated and worSt-

case duration of a given task, and about the task's

resource usage. This information is used during plan
construction, for example in the rejection of an other-

wise promising expansion for a given sub-task _auje
it requires more time than is available. It is also used

in the construction of detailed schedules for imase pro-

cessing tasks.

The fact that actions take time was abstracted out in

the earliest domain models. Planners using these mod-

els will be of limited use in domains where synchronisa-

tion with other events or processes is important. This

may include such domains as manufacturing planning

and scheduling, spacecraft operations, robot planning
in any but the most simplified domains, and schedul-

ing distributed problem-solving or other proceming.

It certainly includes analysis and retrieval planning
within ECS.

Several planners include representations for metric

time and action durations. This kind of truing
tends to be Computationaliy expensive. F0ri_]n,])e-

viser, and Sipe all suffer from performance problems

limiting the size of the problems to which they can be

applied. Oplan-2 appears to be able to handle some-

what larger problems than the other planners men-
tioned here.

Implementing an efficient temporal reasoning system

is not the sole hurdle, however. Adding duration to

nonlinear plans increases the difficulty of determining
whether or not the current partial plan can be refined

into a plan that will have the desired effects. In fact,
it becomes difficult to determine simply whether the

actions described in the current partial plan can even
be executed.

93

Consider the simple plan fragment in Figure 2. There
are two unordered tasks, each annotated with an es-

timated duration. If actions can only be taken in

sequence, the two tasks depicted must eventually be

ordered. When the planner tries to order them, it

will discover that neither ordering will work, because
there simply isn't room for them to be performed in

sequence. In general, determining whether there is an

ordering for a set of actions constrained in this way is

a hard problem.

To date, two methods have been used to address this

problem. The first is simulation: the planner main-
tains a partial order, and after every modification ex-

pends some effort exploring the corresponding set of
total orders to ensure that there is some feasible to-

tal order [Miller, 1985, Muscettola, 1990]. As gener-

ally employed, this is a heuristic method: the plan-

ner gives up before exploring the complete set of con-
sistent total orders. Another approach, described in

[Williamson and Hanks, 1988], involves organizing a

partially-ordered plan into a tree of abstract opera-

tor types, known as Hierarchical Interval Constraints

(HIC). Each HIC type has a function defined for cal-

culating bounds on its duration. For the example in

Figure 2, the two activities would be contained in an
HIC whose duration was calculated by summing the
duration of the included operators. The problem with

this approach is the required tree structure. If actions
must be ordered for reasons that are not locally deter-

minable (e.g. because of resource conflicts, not because

they are sequential steps in some task reduction), this

representation will break down. It may be possible

to augment Williamson and Hanks' representation to
cope with a limited number of special structures rep-

resenting such nonlocal information.

In PlaSTiC, we have started with the assumptions that

resource conflicts are significant, that activity dura-
tions are nontrivial, and that deadlines will be a factor.

For these reasons, the temporal reasoning underlying

PlaSTiC is implemented in a full-fledged scheduling

engine, so that resource conflicts can be noted and

resolved as part of the planning process. Similarly,
deadline checks are performed automatically as task

reduction and order proceeds, triggering backtracking

as necessary. The task hierarchy employed by PlaSTiC
maintains at all levels a set of duration estimates, so

that deadline and resource conflicts may be noticed be-

fore a task is expanded all the way to primitive actions.

This approach is consistent with the simulation-based

technique described above, but so far we have had con-

siderable success in simply resolving possible problems

(e.g., potential resource conflicts) as they arise.

The scheduling component of PlasTiC is built on the

Kronos scheduling engine. The DADS V0 Scheduler

94

described below employs this same technology, but
with significant extensions to address domain specific

scheduling and system integration issues

4 DADS V0 Scheduler

Unlike direct-readout centers which will dynamically

create data flow sequences, the DADS of EOSDIS

maintains a database of fixed data flow diagrams.

These are retrieved upon request from a database
to accomplish various DADS functions. Hence, the

DADS required only scheduling and dispatch technol-

ogy for nominal operations.

In particular, the DADS V0 Scheduler is responsible

for scheduling actions and resources to ingest data
from a network to buffer disks, transfer buffered data

to a mass storage archive, and to retrieve archived

data upon request. The scheduler was developed con-

currently with the design and implementation of the
GSFC V0 DADS. Consequently it was essential that
the architecture and interfaces be able to tolerate

changes as the system design evolved. The baseline ar-

chitectural environment of the scheduler is depicted in

Figure 3. This environment continues to evolve, but its
conceptual and functional characteristics remain sta-

ble, so many system changes can be accommodated in

the Application Program Interface (API).

The DADS Manager submits scheduling requests, haw
dies errors, and retrieves schedule information. The

Task Dispatcher periodically queries the scheduler for

a list of upcoming scheduled activities to be executed.

The execution monitor notifies the scheduler of events
that affect the schedule.

4.1 Approach

The scheduling tool described in this paper was de-

signed to meet the scheduling and resource allocation
needs of the GSFC V0 DAAC while simultaneously

using the IIFS as a testbed.

Constraint envelope scheduling technology offers an

attractive, proven method of meeting the scheduling
needs of data archiving and distribution. This tech-

nology, embodied in Honeywell's enhanced implemen-

tation of the Time Map Manager (TMM), supports the
concept of a Temporal Constraint Graph (TCG) which

can be used to represent multiple projections of future

system behavior, thereby providing rapid rescheduling

with minimal disruption in the presence of schedule

uncertainty.

The DADS V0 Scheduler is an application of the Kro-

noe scheduling engine, built on top of TMM. Kro-

noe has been successfully applied to domains such as

DADS

Manager

Task & Resource
Scheduler

Application Program Interface

Task

Dispatcher

Execution
Monitor

Figure 3: The DADS VO Scheduler's Architectural Environment

space shuttle mission scheduling, demand flow man-
ufacturing, and avionics communications scheduling.
It has handled scheduling problems involving 20,000
tasks and 140,000 constraints, with interactive re-
sponse times for schedule modification on the order
of a few seconds on a SPARC10.

4.2 Scheduler Requirements

Detailed scheduler requirements were initially estab-
lished for the DADS application, then extended and
adapted to encompass the scheduling needs of other
NASA programs. The following paragraphs summa-
rize requirements at a high level. They confirm the
need to be appropriate to the application domain, to
be compatible with the target system, and to provide
responsive performance reliably.

Domain Appropriate - Commercial scheduling
tools sacrifice domain relevance to extend their range
of applicability, and hence their marketability. They
often lack the capacity to efficiently handle the precise
scheduling needs of large, complex applications. In or-
der to select or define a scheduling tool that is domain
appropriate, application driven requirements must be
established. Whenever possible, these requirements
should be based on multiple examples of domain op-
erations and scheduling functions using realistic data
sets. They must include quantitative demonstration
that capacity and performance goals can be met si-
multaneously.

Since the GSFC V0 DADS is being developed concur-
rently with the prototype scheduler, we were careful to
maintain a high degree of generality in the scheduler
implementation. By first building a core scheduling
capability derived from our Kronos scheduling engine,
and then extending that capability through specializa-
tion, we were able to meet the specific needs of DADS

while providing a scheduling tool that can easily be
applied to similar problem domains.

Stated as a system requirement, the scheduling core
domain model must be compatible with objects and
functions required by the target application. Further,
its customization capabilities must support accurate
modelling of every schedule relevant aspect of the do-
main. Care should be taken to ensure that this model

reflects the intended scheduling policies and proce-
dures of the application, and not the characteristics of
analytical models used to project system performance.

Details of the scheduling core domain model are de-
scribed in section 4.4.1. For the prototype scheduler,
subclasses were created to capture application specific
attributes and relationships. These attributes may be
used to carry system data through the schedule or to
support performance monitoring and analysis.

In one instance this derivation was particularly en-
lightening. The Kronos scheduling engine associated
resource utilization with the duration of the activities

to which a resource was assigned. If a common re-
source was to required by multiple disjoint activities,
it was expected that a an encompassing parent activity
would specify the requirement and would be assigned
the shared resource. In the GSFC V0 DADS, there is
no encompassing parent activity. Resource utilization
can be initiated by one activity (e.g., through transfer
of network data to a space on buffer disk) and must
persist indefinitely into the future (e.g., until a future
activity transfers it to the archive).

By creating persistent requirement and persistent re-
source profile classes as subclasses of the requirement
class and resource profile class, respectively, we were
able to provide the necessary scheduler functionality
with a minimum of disruption. Persistent require-
ments have the option of specifying that they begin,

95

use, or ending with their associated activity. This al-
lows the resource allocation to be open ended if de-

sired.

To be effective, any tool must be functionally com-

plete. That is, it must be able to solve the prob-

lems to which it is applied. A scheduler must en-
force structural constraints (i.e., predecessor-successor

and parent-child relationships), temporal constraints

(e.g., earliest start or deadline), and resource availabil-

ity constraints while carrying out the desired schedul-

ing and resource allocation policies in an automated
fashion. In the prototype scheduler, policies are cur-

rently encoded as functions and a domain specific al-

gorithm (as described in_tion 4.4.3. We p)sn t o
eventually excise policy details from the scheduler by

defining syntax for policy specification. This specifi-
cation will then be input to the scheduler and used to

control scheduling and resource allocation decisions.

Compatible - The scheduling tool described here is

designed be integrated as a functional component into
the target application system. It cannot dictate re-

quirements to that system, rather, it must adapt to

the physical and logical demands of the encompassing
system. The scheduler must execute on available hard-

ware running the specified operating system. It must

be able to communicate with asynchronous functional

modules of application system via standard interpro-

cess communication system facilities.

The scheduler must also be linguistically compatible

with the surrounding system. It must beable to inter-
pret and respond appropriately to requests for service

and information. The prototype scheduler meets this

requirement in several ways. The scheduler includes an
API customized to the syntactic and semantic needs
of the DADS modules with which it interacts. An

underlying set of basic API functions facilitates this
customization.

The scheduler supports the notion of activity state.

The exact states and legal state transitions are defined

for the application. In DADS, activities can be sched-
uled, committed, dispatched, executing, complete, or
failed. Additional states and even additional state di-

mensions can be added as the need arises.

Responsive - Performance is often a critical require-
ment, but it is frequently overlooked in scheduling.

By making this distinction, we have not only, made

each aspect more manageable, but we can tailor the

functionality an performance of each eomponent's ira-
plementation to the needs of the application. Planning

typically occurs before scheduling, though replanning

may become necessary. In the GSFC V0 DADS ap-

plication, there is a small set of functions to be per-
formed (e.g., ingestion, distribution). These can be

pre-planned in advance and described to the scheduler

as tasks (with subtasks).

The scheduler must, on demand and in near real time,
fit each new instance of a task into the current schedule

in accordance with task priorities and deadlines while

ensuringthai n_ rmources will be available. As

actual events occur in the execution of the scheduler,

it must rapidly reschedule to reflect the impact of the

event. It must provide data to support graphic presen-
tation of the current schedule, and even allow operator

manipulation of tasks.

Reliable - The fault tolerance approach employed

by the target application must be supported by the
scheduler. In the GFSC V0 DADS this translates to

requirements for redundant archiving of schedule in-
formation and rapid recovery of the schedule after a

failure. The prototype scheduler does not fully include

these features at present. However, basic mechanisms

needed for reload are present in the script processor de-

scribed in section 4.3. Also, previous schedulers based
on the Kronos engine have included schedule storage

and reload capabilities.

4.3 Prototype Environment

The DADS V0 Scheduler is being developed concur-

rently with the GSFC V0 DADS. Consequently it
was nece_ary to provide a stand-alone environment in

which to test and demonstrate scheduler functionality.

The operation of components external to the sched-
uler was simulated via a script processor as shown in

Figure 4. The script processor is controlled from a

demonstration Graphical User Interface (GUI) that

displays schedule activities and resource utilization

profiles. Snapshots of the demonstration GUI screen

may be seen in Figures 7 and 8. The GUI supports
selection and execution of an event script which the

script processor translates into API commands that it
sends to the scheduler.

It is assumed that scheduling will be performed once ,A typical script mltmhzes the scheduler by describing
in an initial scheduling effort and that the resulting the resources available for scheduling, commands the
schedule will satisfactorily describe the actual exeeu-

creation of activities to be scheduled, and simulates
tion of activities. This view is seldom correct, execution events such as completion of execution. The

We have segregated the total problem into two phases, script also notifies the GUI as objects to be displayed

planning (what to do) and scheduling (when to do it). are created.

96

Demonstration

GUI Task & Reeoume IScheduler

APl_lcatlon Program Interlace

Script Procemmr

Figure 4: The Prototype System Architecture

Application Specific (DADS) Program Interface

DADS Domain Model Generic Application

Program
Scheduling Core Domain Model Interface

Constraint Engine & Temporal Knowledge Base (TMM)

Figure 5: The Architecture of the Scheduler

Graphical presentation of scheduler operation is visu-
ally convincing, but it is inconvenient for testing and

benchmarking purposes. Recently, auditing and test
functions were added to facilitate execution and val-

idation of complex event scripts. The test function

automates the execution of scripts and the invocation

of the audit function, which checks the schedule for

consistency and correctness.

4.4 Architecture of the Scheduler

The internal architecture of the scheduler is depicted

in Figure 5. The base layer supplies basic temporal

reasoning capability. This includes objects such as un-

certain time-points and constraints, and functions for

updating and querying the temporal knowledge base.

The Scheduling Core Domain Model supplies the ba-
sic objects and functions needed for scheduling and

resource management. Combined with the Generic

API, these layers form a core scheduling capability
that can be applied to various scheduling domains. In

the DADS V0 Scheduler implementation, the base do-

main model was extended through specialization and

extension to provide appropriate domain-specific ca-

pabilities, shown in the figure as the DADS Domain
Model and the DADS API.

4.4.1 Domain Model

Key object classes of the scheduling core domain model

include resources, requirements, activities and hierar-

chical activities. These are shown in Figure 6 along

with related objects classes of the DADS scheduling
domain model.

An activity represents an action to to be scheduled.

Each activity has an associated main-token which de-

fines its end points in time and its possible duration

range. An activity may be linked to multiple resource
requirements. These abstractly define attributes that

must be satisfied by the resources allocated to the ac-

tivity. A subclass of the activity al]ows hierarchical
activity structures to be defined. These were used in

the DADS scheduler to implement tasks with compo-
nent subtasks.

As an example, in the DADS application, a data inges-
tion task will have several subtasks. The data buffer-

ing subtask requires access to the FDDI network and

a specific amount of space on one of the data inges-
tion magnetic disks. A subsequent archiving subtask

requires access to the data on buffer disk and space on
the UNITB.EE archive magnetic disk.

The core resource classes allow resources to be concep-

tually organized into pools using a hierarchical name

structure (which permits wildcards) and using a list of
resource attributes. Each resource has an associated

availability that defines the maximum quantity of that

97

r Rmm_nm
Illlmll
attrlbut_
availability

I
I Requkement L

attrlbut_

activltleo i-

DADS
Resource

DADS Object

client
dads..name

i i
'1

i DADS Activity J
ff-- l
OUCCe88011 [

Figure 6: Key DADS Scheduling Object Classes

resource and its temporal range.

Specializations of the core object classes extend the hi-
erarchy to include characteristics of the target domain.

In the DADS scheduler these specializations share a

common parent class, the DADS object, which defines
attributes every DADS activity, resource requirement,

or resource must have. Only the client and dads-name

attributes are shown in the figure.

4.4.2 Application Program Interface (API)

The Application Program Interface was specified for-

mally by documenting data content (i.e. fields and

forms) of the primary information components (i.e.
tasks, subtasks, resources, etc.) exchanged between
the scheduler and DADS subsystems. For each com-

mand, the documentation details the participants in

the exchange utilizing the command, the conditions
Under Which the c0mmandbccurs, the intent (seman-

tics) of the command, and the scheduler's response to
the command under both normal and error conditions.

The following command categories describe the func-
tions of the scheduler visible via the API. The cat-

egories have been intentionally kept rather abstract

and high level here. Not all command categories have
been fully implemented in the prototype scheduler.

Definltlon/Iv _tantlation - Inform the scheduler of
the existence of scheduling entities such as activities

(i.e. tasks and subtasks), resources, and abstract re-

source utilization requirements. These commands do

not cause scheduling to occur.

Modification - Change the specifics of information

known to the scheduler. This category encompasses

only changes to the scheduling problem (e.g. relax-
ation of a deadline). It does not include notification of
real-world execution events.

Interrogation/Retrieval-__ ---- - Retrieve schedule and
resource allocation information from the scheduler,

This information is based on the scheduler's model of

the problem space, its record of past events, and its

projection of future events including resource utiliza-
tion.

Schedullng/Reschedtding - Compute a
new schedule with resource allocations. Commands in

this category may be invoked indirectly by commands

in the Update/Synchronization category.

Update/Synchronization - Inform the scheduler

of the occurrence of real-world events (e'g. _tivity

execution completion) which may affect the schedule.
This category also includes commands for the trans-

fer of responsibility for an activity from the scheduler

to another subsystem (e.g., an execution monitor or

dispatcher).

Notification Inform another subsystem that a

problem (or potential problem) has been detected by
the scheduler.

Communication Handshaking - Provide positive

acknowledgement of information transfer.

98

II

_00 Call_t_ _ _ "_ []

1 2 3 4 S S 7 l S :tO 44 /_

I I i l i I I I I I I I

Figure 7: Schedule after Data 1 #1 Arrives

Fault-Tolerance/Recovery - Support for informa-

tion backup and recovery from failures.

4.4.3 Scheduling Policy

The operation of the scheduler is controlled by schedul-
ing policies. These are currently captured in domain

specific algorithms for resource assignment and activ-
ity scheduling.

The baseline resource assignment and scheduling algo-
rithm is:

For each activity to be scheduled:

• If the activity has component activities,

Schedule each of its component activities

(i.e., apply this algorithm recursively).

• If the activity is scheduleable,

For each resource requirement of this activ-

ity:

If a satisfactory resource is available for

use without causing it to be oversubscribed,

assign that resource to meet the require-
ment. Availability implies that the resource

is part of the resource pool specified in the

resource requirement and has the attributes
specified in the resource requirement.

If no satisfactory resource is available,

apply the following stratagems in se-

quential order, using the possible resources

until one of them successfully eliminates the

oversubscription:

• Constrain the order of activities in-

volved in the oversubscription:

Individually before the activity, or

Individually after the activity, or

Collectively before the activity, or

• Collectively after the activity.

• Relax the deadline of activities in-

volved in the oversubscription
and constrain the order of activities

(as above)
• Constrain the order of parent activ-

ities of the activities involved in the over-

subscription (as above)

• Report failure [and Exit]

• If the activity is still scheduleable

and all component activities of this activity
have been scheduled,

Mark the activity scheduled•

Then update:

• The schedule's temporal knowledge base,

• The time bounds of all changed resource utiliza-
tion profiles.

4.5 Scheduling Example

The operation of the prototype scheduler is revealed

in Figures 7 and 8. In this simple example, taken from

the Clouds and the Earth's Radiant Energy System

(CERES) domain, two instances of a single task type

99

II

.-g

L

|,.

Figure 8: Schedule after Data 2 #2 Completes Execution

have been scheduled. Each task consists of four re-

lated subtasks with interdependencies. The first sub-

task is to wait until a particular radiation budget data
set arrives. The second subtask is to calibrate and
Earth-locate that data set. A calibration resource is

required by this subtask. The third subtask is to wait

for a corresponding cloud identification data set. The
final subtask is to compute cloud data by combining

the calibrated radiation budget data with the cloud

data to produce a combined data product. The Cali-
brate subtask cannot occur until its Data I is available.

The Compute Clouds subtask cannot occur until the
Calibrate subtask is complete and its Data 2 is avail-

able. For illustrative purposes, the second task has

been given a deadline of 11:00 while the first task has
no deadline.

Figure 7 shows the situation after the first dataset ar-
rives. The earliest scheduled time for each activity is

shown to the right of its name as a solid horizontal bar.

Dashed lines indicate the the range of possible occur-

rences of the activity. The current time is represented
as a vertical line.

Subtask 1001 has now started because subtask 1000
has finished. Subtask 1003 cannot start until sub-

task 1001 completes. Subtask 2001 could start im-

mediately, but since its predecessor subtask, 2000, is
still executing, it will slip as time passes. Because of a

similar predecessor dependency on subtask 2001, sub-

task 2003 wilt also slip. The scheduler automatically
reschedules the earliest start and earliest end times of

these activities as time passes.

The resource utilization profile of one of the resources

used by the example activities is shown at the bot-

tom of Figure 7. The profile indicates both the sched-

uled (black) and potential (gray) utilization of the re-
source. The API of the DADS V0 Scheduler provides

query commands for determining the relationships be-
tween resource utilization and scheduled activities, but

in this example careful examination of the shape of

the profile reveal that increments of the Calibration
tool resource have been allocated to satisfy the require-

ments of subtasks 1001 and 2001.

At a later time, after more of the suhtasks have com-

pleted execution, the situation is noticeably different.
This is shown in Figure 8. Subtask 1003 did not start

immediately after Subtask 1001 (Calibrate) because of

its additional dependency on the completion ofsubtMk

1002 (Data 2). Notice that although task 100 has no
deadline, a maximum end time for subtask 1003 has
been scheduled because that subtask has an associated

maximum duration.

The resource utilization profile for the Calibration tool

resource has changed significantly from that projected

in Figure 7. This is because the start of subtask 2001
could not be predicted reliably because of its depen-
dency on the completion of subtask 2000. The execu-
tion of subtask 2001, and the utilization of the Calibra-

tion resource was rescheduled until its Data 1 arrived.

Even this simple example shows that accurate schedul-

ing and optimization of resource usage requires a

scheduling tool that can rapidly reschedule future ac-
tivities in response to real-world events.

]00

5 Summary, Conclusions and Future
Work

In this paper, we have presented results of the appli-

cation of Honeywell's scheduling technology to an ap-

plication of data archiving and distribution. We have

described our progress to date and some insights re-
garding further application of this technology to other

domains. Moving to broader operational use will re-
quire further refinement and development.

We plan to continue development and refinement of the

planning and scheduling capabilities described in this
paper. Our efforts will be focused on increasing their

appficability and achieving the goal of realization of

the Intelligent Information Fusion System. In the near

term we will be provide documentation, training, and

support materials in order to obtain design feedback

through use of these tools. We will simultaneously
continue to extend their functionality in support of
additional application domains.

References

[Miller, 1985] David P. Miller. Pinning by search through
simulations. Technical Report 423, Yale University Com-
puter Science Department, 1985.

[Muscettol&, 1990] Nicol& Muscettol&. Integrsting plan-
ning ud scheduling to solve space mission scheduling
problems. In Proceedings DA RPA Workshop on Innova-
tive Approaches to Planning, Scheduling, and Control,
pages 220-230. Morgan Kanfmann, November 1990.

[Williamson and Hanks, 1988] Mike Williamson and Steve
Hanks. Efficient temporal reasoning for plan projection.
In James Hendler, editor, Proceedings o/the First Inter-
national Con]erence on Artificial Intelligence Planning
Systems, pages 313-314, 1988.

1Ol

