100 research outputs found

    Dietary, Cultural, and Pathogens-Related Selective Pressures Shaped Differential Adaptive Evolution among Native Mexican Populations

    Get PDF
    Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations

    History of Reading Struggles Linked to Enhanced Learning in Low Spatial Frequency Scenes

    Get PDF
    People with dyslexia, who face lifelong struggles with reading, exhibit numerous associated low-level sensory deficits including deficits in focal attention. Countering this, studies have shown that struggling readers outperform typical readers in some visual tasks that integrate distributed information across an expanse. Though such abilities would be expected to facilitate scene memory, prior investigations using the contextual cueing paradigm failed to find corresponding advantages in dyslexia. We suggest that these studies were confounded by task-dependent effects exaggerating known focal attention deficits in dyslexia, and that, if natural scenes were used as the context, advantages would emerge. Here, we investigate this hypothesis by comparing college students with histories of severe lifelong reading difficulties (SR) and typical readers (TR) in contexts that vary attention load. We find no differences in contextual-cueing when spatial contexts are letter-like objects, or when contexts are natural scenes. However, the SR group significantly outperforms the TR group when contexts are low-pass filtered natural scenes [F(3, 39) = 3.15, p<.05]. These findings suggest that perception or memory for low spatial frequency components in scenes is enhanced in dyslexia. These findings are important because they suggest strengths for spatial learning in a population otherwise impaired, carrying implications for the education and support of students who face challenges in school

    Credit Information Sharing and Loan Default in Developing Countries: The Moderating Effect of Banking Market Concentration and National Governance Quality

    Get PDF
    Departing from the existing literature, which associates credit information sharing with improved access to credit in advanced economies, we examine whether credit information sharing can also reduce loan default rate for banks domiciled in developing countries. Using a large dataset covering 879 unique banks from 87 developing countries from every continent, over a nine-year period (i.e., over 6,300 observations), we uncover three new findings. First, we find that credit information sharing reduces loan default rate. Second, we show that the relationship between credit information sharing and loan default rate is conditional on banking market concentration. Third, our findings suggest that governance quality at the country level does not have a strong moderating role on the effect of credit information sharing on loan default rate

    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    I Want to (Bud) Break Free: The Potential Role of DAM and SVP-Like Genes in Regulating Dormancy Cycle in Temperate Fruit Trees

    Get PDF
    Bud dormancy is an adaptive process that allows trees to survive the hard environmental conditions that they experience during the winter of temperate climates. Dormancy is characterized by the reduction in meristematic activity and the absence of visible growth. A prolonged exposure to cold temperatures is required to allow the bud resuming growth in response to warm temperatures. In fruit tree species, the dormancy cycle is believed to be regulated by a group of genes encoding MADS-box transcription factors. These genes are called DORMANCY-ASSOCIATED MADS-BOX (DAM) and are phylogenetically related to the Arabidopsis thaliana floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE 24. The interest in DAM and other orthologs of SVP (SVP-like) genes has notably increased due to the publication of several reports suggesting their role in the control of bud dormancy in numerous fruit species, including apple, pear, peach, Japanese apricot, and kiwifruit among others. In this review, we briefly describe the physiological bases of the dormancy cycle and how it is genetically regulated, with a particular emphasis on DAM and SVP-like genes. We also provide a detailed report of the most recent advances about the transcriptional regulation of these genes by seasonal cues, epigenetics and plant hormones. From this information, we propose a tentative classification of DAM and SVP-like genes based on their seasonal pattern of expression. Furthermore, we discuss the potential biological role of DAM and SVP-like genes in bud dormancy in antagonizing the function of FLOWERING LOCUS T-like genes. Finally, we draw a global picture of the possible role of DAM and SVP-like genes in the bud dormancy cycle and propose a model that integrates these genes in a molecular network of dormancy cycle regulation in temperate fruit trees

    Clustering schizophrenia genes by their temporal expression patterns aids functional interpretation

    Get PDF
    Background Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms. Study design We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls. Study results Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals. Conclusions We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other’s effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore