36 research outputs found

    One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes

    Get PDF
    We report on the one-pot synthetic procedure of cyclen derivatives bearing three acetate groups attached on boehmite nanoparticles, the complexing capabilities of these inorganic–organic hybrid materials with rare earth cations, and the behaviour as contrast agents or fluorescence probes.Delgado Pinar, Estefania, [email protected] ; Frias Martinez, Juan Carlos, [email protected] ; Albelda Gimeno, Maria Teresa, [email protected] ; Alarcon Navarro, Javier, [email protected] ; Garcia-España Monsonis, Enrique, [email protected]

    Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns

    Get PDF
    G protein-coupled receptor kinase 2 (GRK2) has recently emerged as a negative modulator of insulin signalling. GRK2 downregulation improves insulin sensitivity and prevents systemic insulin resistance (IR). Cardiac GRK2 levels are increased in 5 human heart failure, while genetically inhibiting GRK2 leads to cardioprotection in mice. However, the molecular basis underlying the 6 deleterious effects of GRK2 up-regulation and the beneficial effects of its inhibition in the heart are not fully understood. Therefore, 7 we have explored the interconnections among a systemic IR status, GRK2 dosage and cardiac insulin sensitivity in adult (9 month-old) animals. GRK2+/- mice display enhanced cardiac insulin sensitivity and mild heart hypertrophy with preserved systolic function. Cardiac gene expression is reprogrammed in these animals, with increased expression of genes related to physiological hypertrophy, while the expression of genes related to pathological hypertrophy or to diabetes/obesity co-morbidities is repressed. Notably, we find that cardiac GRK2 levels increase in situations where IR develops, such as in ob/ob mice or after high fat diet feeding. Our data suggest that GRK2 downregulation/inhibition can help maintain cardiac function in the face of co-morbidities such as IR, diabetes or obesity by sustaining insulin sensitivity and promoting a gene expression reprogramming that confers cardioprotection.Grants from Ministerio de Educación y Ciencia (SAF2011-23800), Fundación para la Investigación Médica Aplicada (FIMA) and UTE project CIMA, The Cardiovascular Network of Ministerio Sanidad y Consumo-Instituto Carlos III (RD06-0014/0037 and RD12/0042/0012), Comunidad de Madrid (S2010/BMD-2332) and EFSD-Novo Nordisk to F.M and UAM Grupo Santander to C.M and Wood-Whelan Research Fellowship from IUBMB to E.L. We also acknowledge institutional support from Fundación Ramón Arece

    p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1

    Get PDF
    During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.G.S. is a YIP EMBO member. B.G.T. was a fellow of the FPI Severo Ochoa CNIC program (SVP-2013-067639) and currently is funded by the AHA-CHF (AHA award number: 818798). V.M.R. is a FPI fellow (BES-2014-069332) and A.M.S. is a fellow of the FPI Severo Ochoa CNIC program (BES-2016-077635). This work was funded by the following grants: to G.S.: funding from the EFSD/Lilly European Diabetes Research Programme Dr Sabio, from Spanish Ministry of Science, Innovation and Universities (MINECO-FEDER SAF2016-79126-R and PID2019-104399RB-I00), Comunidad de Madrid (IMMUNOTHERCAN-CM S2010/BMD-2326 and B2017/BMD-3733) and Fundación Jesús Serra; to P.A.: Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT971-16 to P.A.), MCIU/AEI/FEDER, funding from Spanish Ministry of Science, Innovation and Universities (RTI2018-095134-B-100); Excellence Network Grant from MICIU/AEI (SAF2016-81975-REDT and 2018-PN188) to PA and GS; to J.V.: funding from Spanish Ministry of Science, Innovation and Universities (PGC2018-097019-B-I00), the Instituto de Salud Carlos III (Fondo de Investigación Sanitaria grant PRB3 (PT17/0019/0003- ISCIII-SGEFI / ERDF, ProteoRed), and “la Caixa” Banking Foundation (project code HR17-00247); to J.P.B.: funding from Spanish Ministry of Science, Innovation and Universities (PID2019-105699RB-I00, RED2018‐102576‐T) and Escalera de Excelencia (CLU-2017-03); to J.A.E.: funding from Spanish Ministry of Science, Innovation and Universities MINECO (RED2018-102576-T, RTI2018-099357-B-I00), CIBERFES (CB16/10/00282), and HFSP (RGP0016/2018). RAP (XPC/BBV1602 and MIN/RYC1102). The CNIC is supported by the Ministry of Science, Innovation and Universities and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24−/− mouse model of HGPS. Challenge of Zmpste24−/− mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24−/− cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24−/− progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death

    A Novel Circulating MicroRNA for the Detection of Acute Myocarditis.

    Get PDF
    The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis. To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls. We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level. After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.).Supported by a grant (PI19/00545, to Dr. Martín) from the Ministry of Science and Innovation through the Carlos III Institute of Health–Fondo de Investigación Sanitaria; by a grant from the Biomedical Research Networking Center on Cardiovascular Diseases (to Drs. Martín, Sánchez-Madrid, and Ibáñez); by grants (S2017/BMD-3671-INFLAMUNE-CM, to Drs. Martín and Sánchez-Madrid; and S2017/BMD-3867-RENIM-CM, to Dr. Ibáñez) from Comunidad de Madrid; by a grant (20152330 31, to Drs. Martín, Sánchez-Madrid, and Alfonso) from Fundació La Marató de TV3; by grants (ERC-2011-AdG 294340-GENTRIS, to Dr. Sánchez-Madrid; and ERC-2018-CoG 819775-MATRIX, to Dr. Ibáñez) from the European Research Council; by grants (SAF2017-82886R, to Dr. Sánchez-Madrid; RETOS2019-107332RB-I00, to Dr. Ibáñez; and SAF2017-90604-REDT-NurCaMeIn and RTI2018-095928-BI00, to Dr. Ricote) from the Ministry of Science and Innovation; by Fondo Europeo de Desarrollo Regional (FEDER); and by a 2016 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation to Dr. Martín. The National Center for Cardiovascular Research (CNIC) is supported by the Carlos III Institute of Health, the Ministry of Science and Innovation, the Pro CNIC Foundation, and by a Severo Ochoa Center of Excellence grant (SEV-2015-0505). Mr. Blanco-Domínguez is supported by a grant (FPU16/02780) from the Formación de Profesorado Universitario program of the Spanish Ministry of Education, Culture, and Sports. Ms. Linillos-Pradillo is supported by a fellowship (PEJD-2016/BMD-2789) from Fondo de Garantía de Empleo Juvenil de Comunidad de Madrid. Dr. Relaño is supported by a grant (BES-2015-072625) from Contratos Predoctorales Severo Ochoa para la Formación de Doctores of the Ministry of Economy and Competitiveness. Dr. Alonso-Herranz is supported by a fellowship from La Caixa–CNIC. Dr. Caforio is supported by Budget Integrato per la Ricerca dei Dipartimenti BIRD-2019 from Università di Padova. Dr. Das is supported by grants (UG3 TR002878 and R35 HL150807) from the National Institutes of Health and the American Heart Association through its Strategically Focused Research Networks.S

    Serum tissue inhibitor of matrix metalloproteinase-1 levels are associated with mortality in patients with malignant middle cerebral artery infarction

    Get PDF
    Background: In the last years, circulating matrix metalloproteinases (MMP)-9 levels have been associated with functional outcome in ischemic stroke patients. However the prognostic value of circulating levels of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and MMP-10 in functional outcome of ischemic stroke patients has been scarcely studied. In addition, to our knowledge, serum MMP-9, MMP-10 and TIMP-1 levels in patients with malignant middle cerebral artery infarction (MMCAI) for mortality prediction have not been studied, and these were the objectives of this study. Methods: This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. We included patients with severe MMCAI defined as Glasgow Coma Scale (GCS) lower than 9. We measured circulating levels of MMP-9, MMP-10, TIMP-1, in 50 patients with severe MMCAI at diagnosis and in 50 healthy subjects. Endpoint was 30-day mortality. Results: Patients with severe MMCAI showed higher serum levels of MMP-9 (p = 0.001), MMP-10 (p 239 ng/mL are associated with 30-day mortality (OR = 5.82; 95 % CI = 1.37-24.73; P = 0.02) controlling for GCS and age. The area under the curve for TIMP-1 as predictor of 30-day mortality was 0.81 (95 % CI = 0.67-0.91; P < 0.001). We found an association between circulating levels of TIMP-1 and MMP-10 (rho = 0.45; P = 0.001), plasminogen activator inhibitor (PAI)-1 (rho = 0.53; P < 0.001), and tumor necrosis factor (TNF)-alpha (rho = 0.70; P < 0.001). Conclusions: The most relevant and new findings of our study, were that serum TIMP-1 levels in MMCAI patients were associated with mortality, and could be used as a prognostic biomarker of mortality in MMCAI patients

    Myocardial Notch1-Rbpj deletion does not affect NOTCH signaling, heart development or function.

    No full text
    During vertebrate cardiac development NOTCH signaling activity in the endocardium is essential for the crosstalk between endocardium and myocardium that initiates ventricular trabeculation and valve primordium formation. This crosstalk leads later to the maturation and compaction of the ventricular chambers and the morphogenesis of the cardiac valves, and its alteration may lead to disease. Although endocardial NOTCH signaling has been shown to be crucial for heart development, its physiological role in the myocardium has not been clearly established. Here we have used mouse genetics to evaluate the role of NOTCH in myocardial development. We have inactivated the unique and ubiquitous NOTCH effector RBPJ in early cardiomyocytes progenitors, and examined its consequences in cardiac development and function. Our results show that mice with Tnnt2-Cre-mediated myocardial-specific deletion of Rbpj develop to term, with homozygous mutant animals showing normal expression of cardiac development markers, and normal adult heart function. Similar observations have been obtained after Notch1 deletion with Tnnt2-Cre. We have also deleted Rbpj in both myocardial and endocardial progenitor cells, using the Nkx2.5-Cre driver, resulting in ventricular septal defect (VSD), double outlet right ventricle (DORV), and bicuspid aortic valve (BAV), due to NOTCH signaling abrogation in the endocardium of cardiac valves. Our data demonstrate that NOTCH-RBPJ inactivation in the myocardium does not affect heart development or adult cardiac function
    corecore