11 research outputs found

    Interaction Effects of Life Events and Hair Cortisol on Perceived Stress, Anxiety, and Depressive Symptoms Among Chinese Adolescents: Testing the Differential Susceptibility and Diathesis-Stress Models

    Get PDF
    The differential susceptibility model and the diathesis-stress model on the interaction effect between the individuals’ traits and environmental factors will be conducive to understand in depth whether the psychophysiological traits are the risk factors of child development. However, there is no study focusing on the activity of the hypothalamic-pituitary-adrenal (HPA) axis. We examined whether the HPA activity serves as a physiological marker of the differential susceptibility model or the diathesis-stress model by exploring the interactive effect of life events and hair cortisol on perceived stress, anxiety, and depressive symptoms among Chinese adolescents. The participants were 324 students in senior high school. They reported their psychological states with questionnaires in their first semester after a 3-month adaptation period; 2 weeks later, they provided 1-cm hair segments closest to the scalp. We measured hair cortisol concentration as a biomarker of HPA activity using high-performance liquid chromatography–tandem mass spectrometry. There was a significant interaction effect of academic events and hair cortisol on adolescents’ perceived stress, anxiety, and depression symptoms. We also observed a significant interaction between interpersonal events and hair cortisol on adolescents’ anxiety symptoms. Looking at the region of significance, proportion of interaction index, and proportion affected index, we found that adolescents with higher cortisol levels had a tendency to experience higher perceived stress and anxiety symptoms when they had high academic events scores, but lower perceived stress and anxiety symptoms when they had lower academic events scores. By contrast, adolescents with higher cortisol levels had a greater risk of experiencing high depressive symptoms only when they had higher academic events scores. Adolescents with higher cortisol levels also tended to have lower anxiety symptoms when they had higher interpersonal events scores, but greater anxiety symptoms when they had lower interpersonal events scores. These results suggested that HPA activity might serve as a biomarker of the differential susceptibility model for perceived stress and anxiety symptoms, while for depressive symptoms, it might serve as a marker of the diathesis-stress model

    Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media

    Get PDF
    Electrochemical hydrogen peroxide (H2O2) production (EHPP) via a two-electron oxygen reduction reaction (2e- ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 105 A gCo−1 at 0.5 V vs. RHE), and a high practical H2O2 production rate (4.72 mol gcatalyst−1 h−1 cm−2). Compared with the popularly recognized square-planar symmetric Co-N4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies

    Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media

    Get PDF
    Electrochemical hydrogen peroxide (H2O2) production (EHPP) via a two-electron oxygen reduction reaction (2e- ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 105 A gCo-1 at 0.5 V vs. RHE), and a high practical H2O2 production rate (4.72 mol gcatalyst-1 h-1 cm-2). Compared with the popularly recognized square-planar symmetric Co-N4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies

    A Pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the tgf-β superfamily

    Get PDF
    We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors

    No full text
    corecore