62 research outputs found

    DISCOVERY OF POTENT, ORALLY ACTIVE COMPOUNDS OF TYROSINE KINASE AND SERINE/THREONINE-PROTEIN KINASE INHIBITOR WITH ANTI-TUMOR ACTIVITY IN PRECLINICAL ASSAYS

    Get PDF
    Traditional medicines have become the most productive source of leads for drugs development, particularly as anti-cancer agents. Various screening approaches are being applied. Sorafenib, a multikinase inhibitor, is used to treat primary kidney cancer (advanced renal cell carcinoma) and advanced primary liver cancer. A small library of compounds analogous to sorafenib were designed and screened for the treatment of liver cancer. Multiple members of the family in an assay panel of tyrosine kinase family and serine/threonine-protein kinase family, including VEGFR, Abl, Aurora A, p 38, Lck, Src, PDGFR, Flt3, c-RAF, c-KIT, MEK(MAPKK) were selected to test these compounds. Analysis of the selectivity patterns for these compounds shows specificity for many kinase families. IC50 were measured for the selected compounds. Multiple compounds have very similar kinase inhibition profiles of VEGFR, Flt3, FGFR to that of sorafenib. The IC50 of c-RAF of BB1 is lower than sorafenib. The IC50 of c-RAF of BB3-12 is higher than that of sorafenib. For Flt3, IC50 of BB1-4 is less than sorafenib. The IC50 value of KDR of BB1-10 is less than sorafenib. especially against c-RAF, PDGFR, c-KIT, KDR compared to sorafenib. These compounds are potent Raf1 and Flt4 kinase inhibitors

    Significance of the Balance between Regulatory T (Treg) and T Helper 17 (Th17) Cells during Hepatitis B Virus Related Liver Fibrosis

    Get PDF
    <div><h3>Background</h3><p>Hepatitis B virus-related liver fibrosis (HBV-LF) always progresses from inflammation to fibrosis. However, the relationship between these two pathological conditions is not fully understood. Here, it is postulated that the balance between regulatory T (Treg) cells and T helper 17 (Th17) cells as an indicator of inflammation may predict fibrosis progression of HBV-LF.</p> <h3>Methodology/Principal Findings</h3><p>The frequencies and phenotypes of peripheral Treg and Th17 cells of seventy-seven HBeAg-positive chronic hepatitis B (CHB) patients who underwent liver biopsies and thirty healthy controls were determined by flow cytometry. In the periphery of CHB patients, both Treg and Th17 frequencies were significantly increased and correlated, and a lower Treg/Th17 ratio always indicated more liver injury and fibrosis progression. To investigate exact effects of Treg and Th17 cells during HBV-LF, a series of <em>in vitro</em> experiments were performed using purified CD4<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>, or CD4<sup>+</sup>CD25<sup>−</sup> cells from the periphery, primary human hepatic stellate cells (HSCs) isolated from healthy liver specimens, human recombinant interleukin (IL)-17 cytokine, anti-IL-17 antibody and HBcAg. In response to HBcAg, CD4<sup>+</sup>CD25<sup>+</sup> cells significantly inhibited cell proliferation and cytokine production (especially IL-17 and IL-22) by CD4<sup>+</sup>CD25<sup>−</sup> cells in cell-contact and dose-dependent manners. In addition, CD4<sup>+</sup> cells from CHB patients, compared to those from HC subjects, dramatically promoted proliferation and activation of human HSCs. Moreover, in a dramatically dose-dependent manner, CD4<sup>+</sup>CD25<sup>+</sup> cells from CHB patients inhibited, whereas recombinant IL-17 response promoted the proliferation and activation of HSCs. Finally, <em>in vivo</em> evidence about effects of Treg/Th17 balance during liver fibrosis was obtained in concanavalin A-induced mouse fibrosis models via depletion of CD25<sup>+</sup> or IL-17<sup>+</sup> cells, and it’s observed that CD25 depletion promoted, whereas IL-17 depletion, alleviated liver injury and fibrosis progression.</p> <h3>Conclusions/Significance</h3><p>The Treg/Th17 balance might influence fibrosis progression in HBV-LF via increase of liver injury and promotion of HSCs activation.</p> </div

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Comparative Analysis of Six Complete Plastomes of <i>Tripterospermum</i> spp.

    No full text
    The Tripterospermum, comprising 34 species, is a genus of Gentianaceae. Members of Tripterospermum are mostly perennial, entwined herbs with high medicinal value and rich in iridoids, xanthones, flavonoids, and triterpenes. However, our inadequate understanding of the differences in the plastid genome sequences of Tripterospermum species has severely hindered the study of their evolution and phylogeny. Therefore, we first analyzed the 86 Gentianae plastid genomes to explore the phylogenetic relationships within the Gentianae subfamily where Tripterospermum is located. Then, we analyzed six plastid genomes of Tripterospermum, including two newly sequenced plastid genomes and four previously published plastid genomes, to explore the plastid genomes’ evolution and phylogenetic relationships in the genus Tripterospermum. The Tripterospermum plastomes have a quadripartite structure and are between 150,929 and 151,350 bp in size. The plastomes of Tripterospermum encoding 134 genes were detected, including 86 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and three pseudogenes (infA, rps19, and ycf1). The result of the comparison shows that the Tripterospermum plastomes are very conserved, with the total plastome GC content ranging from 37.70% to 37.79%. In repeat sequence analysis, the number of single nucleotide repeats (A/T) varies among the six Tripterospermum species, and the identified main long repeat types are forward and palindromic repeats. The degree of conservation is higher at the SC/IR boundary. The regions with the highest divergence in the CDS and the intergenic region (IGS) are psaI and rrn4.5-rrn5, respectively. The average pi of the CDS and the IGS are only 0.071% and 0.232%, respectively, indicating that the Tripterospermum plastomes are highly conserved. Phylogenetic analysis indicated that Gentianinae is divided into two clades, with Tripterospermum as a sister to Sinogeniana. Phylogenetic trees based on CDS and CDS + IGS combined matrices have strong support in Tripterospermum. These findings contribute to the elucidation of the plastid genome evolution of Tripterospermum and provide a foundation for further exploration and resource utilization within this genus

    Predictive value of dynamic change of haemoglobin levels during therapy on treatment outcomes in patients with Enneking stage IIB extremity osteosarcoma

    No full text
    Abstract Background We aimed to investigate the roles of hemoglobin (Hb) concentrations and dynamic change during treatment on outcomes of patients with extremity osteosarcoma. Methods We retrospectively analysed 133 patients with Enneking stage IIB extremity osteosarcoma who underwent standard treatments, including univariate and multivariate analyses of patient charateritics, Hb concentrations and changes during pretreatment, neoadjuvant, adjuvant chemotherapy, and decreased Hb levels (ΔHb) to assess their prognostic value in 5-year overall survival (OS) and lung metastasis-free survival (LMFS). Results Five-year OS or LMFS were similar between patients who were anaemic and non-anaemic during pretreatment, neoadjuvant or adjuvant chemotherapy. Patients with continuously decreasing Hb had lower 5-year OS (52.3%) than those without continuous Hb decrease (68.5%, P = 0.04). Patients with ΔHb > 7.6 g/L had lower 5-year OS (57.5%) than those with ΔHb ≤7.6 g/L (75.8%, P = 0.04). However, continuous Hb decrease had no prognostic effect on 5-year LMFS. Subgroup analyses showed that patients who were anaemic during pretreatment, neoadjuvant, or adjuvant chemotherapy with ΔHb ≤7.6 g/L had better outcomes than those with ΔHb > 7.6 g/L (P  7.6 predicted poor5-year OS in patients with Enneking stage IIB extremity osteosarcoma. Attempts to correct anaemia and their effects on outcomes for osteosarcoma patients should be investigated in future trials
    corecore