1,182 research outputs found

    Analysis on Effect Decomposition of Industrial COD Emission

    Get PDF
    AbstractIn this paper, which is based on the effect decomposition model of the emission of pollutants, the change of the industrial COD emission is researched, and a quantitative analysis is carried out for the scale effect, structure effect and technology effect of the industrial COD emission change. The driving factors and causes for this kind of change are identified and the contribution of the three kinds of effects on the pollution reduction is analyzed. The results show that the gradually increasing scale effect is a major factor causing increasing stress on the pollution reduction. The structure effect which is overall low indicates that the activities of optimization and adjustment for the industrial structure have no significant effect. The increment of the generalized technology effect is a main reason for the reduction of the pollution emission. Wherein, the upgrading of industrial technology and the development of scale economy make a great contribution to reduction of pollution. It is an important way to realize the target of pollution reduction by using clean technology effect to offset the new emission and reducing the stock with pollution control effect

    Advanced DC zonal marine power system protection

    Get PDF
    A new Active Impedance Estimation (AIE) based protection strategy which is suitable for utilization in a DC zonal marine power distribution system is presented. This method uses two triangular current "spikes" injections for system impedance estimation and protection when faults are detected. By comparing the estimated impedance with the pre-calibrated value, the fault location can be predicted and fault can be isolated without requiring communication between two injection units. Using co¬operated double injections and line current measurement (directional fault detection), faults in the system with same impedance and different fault positions can be distinguished, located and isolated. The proposed method is validated using experimental test results derived from a 30kW, 400V, twin bus DC marine power system demonstrator. The experimental tests were applied to both faults during normal operation and faults that occur during system restoration

    Three-Particle Correlations from Parton Cascades in Au+Au Collisions

    Get PDF
    We present a study of three-particle correlations among a trigger particle and two associated particles in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We found that three-particle correlation densities in different angular directions with respect to the triggered particle (`center', `cone', `deflected', `near' and `near-away') increase with the number of participants. The ratio of `deflected' to `cone' density approaches to 1.0 with the increasing of number of participants, which indicates that partonic Mach-like shock waves can be produced by strong parton cascades in central Au+Au collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters

    Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)2_2]2_2 (Me = Mn, Fe, Co, Ni, Cu)

    Full text link
    The electronic structure of Me[N(CN)2_2]2_2 (Me=Mn, Fe, Co, Ni, Cu) molecular magnets has been investigated using x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) as well as theoretical density-functional-based methods. Both theory and experiments show that the top of the valence band is dominated by Me 3d bands, while a strong hybridization between C 2p and N 2p states determines the valence band electronic structure away from the top. The 2p contributions from non-equivalent nitrogen sites have been identified using resonant inelastic x-ray scattering spectroscopy with the excitation energy tuned near the N 1s threshold. The binding energy of the Me 3d bands and the hybridization between N 2p and Me 3d states both increase in going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states also leads to weak screening of Cu 2p and 3s states, which accounts for shifts in the core 2p and 3s spectra of the transition metal atoms. Calculations indicate that the ground-state magnetic ordering, which varies across the series is largely dependent on the occupation of the metal 3d shell and that structural differences in the superexchange pathways for different compounds play a secondary role.Comment: 20 pages, 11 figures, 2 table

    Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model

    Full text link
    In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3<pTtrig<63< p^{trig}_T< 6 GeV/cc and 0.15<pTassoc<30.15< p_{T}^{assoc} < 3 GeV/cc (soft), or 2.5<pTtrig<2.5<p^{trig}_T< 4 GeV/cc and 1<pTassoc<2.51< p_{T}^{assoc} < 2.5 GeV/cc (hard) in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process can not be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of pTp_{T} decrease, whileas the increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006

    Safety Outcomes and Near-Adult Height Gain of Growth Hormone-Treated Children with SHOX Deficiency: Data from an Observational Study and a Clinical Trial

    Get PDF
    Background/Aims: To assess auxological and safety data for growth hormone (GH)-Treated children with SHOX deficiency. Methods: Data were examined for GH-Treated SHOX-deficient children (n = 521) from the observational Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS). For patients with near-Adult height information, GeNeSIS results (n = 90) were compared with a clinical trial (n = 28) of SHOX-deficient patients. Near-Adult height was expressed as standard deviation score (SDS) for chronological age, potentially increasing the observed effect of treatment. Results: Most SHOX-deficient patients in GeNeSIS had diagnoses of Leri-Weill syndrome (n = 292) or non-syndromic short stature (n = 228). For GeNeSIS patients with near-Adult height data, mean age at GH treatment start was 11.0 years, treatment duration 4.4 years, and height SDS gain 0.83 (95% confidence interval 0.49-1.17). Respective ages, GH treatment durations and height SDS gains for GeNeSIS patients prepubertal at baseline (n = 42) were 9.2 years, 6.0 years and 1.19 (0.76-1.62), and for the clinical trial cohort they were 9.2 years, 6.0 years and 1.25 (0.92-1.58). No new GH-related safety concerns were identified. Conclusion: Patients with SHOX deficiency who had started GH treatment before puberty in routine clinical practice had a similar height gain to that of patients in the clinical trial on which approval for the indication was based, with no new safety concerns

    Topology Control in Cooperative Ad Hoc Wireless Networks

    Get PDF
    AbstractCooperative communication (CC) is a technique that exploits spatial diversity allowing multiple nodes to cooperatively relay signals to the receiver so that it can combine the received signals to obtain the original message. CC can be combined with topology control to increase connectivity at the cost of a small increase in energy consumption. This work focuses on exploring CC to improve the connectivity with a sink node in ad hoc wireless networks. More precisely, this work proposes a new technique, named CoopSink, that combines CC and topology control techniques to increase connectivity to a sink node while ensuring energy-efficient routes. Simulation results show that connectivity and routing to the sink cost can be improved up to 6.8 and 2.3 times, respectively, when compared with other similar strategies

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
    • …
    corecore