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Abstract For a weakly nonholonomic system, the Lie
symmetry and approximate Hojman conserved quan-
tity of Appell equations are studied. Based on the Ap-
pell equations for a weakly nonholonomic system un-
der special infinitesimal transformations of a group in
which the time is invariable, the definition of the Lie
symmetry of the weakly nonholonomic system and its
first-degree approximate holonomic system are given.
With the aid of the structure equation that the gauge
function satisfies, the exact and approximate Hojman
conserved quantities deduced directly from the Lie
symmetry are derived. Finally, an example is given
to study the exact and approximate Hojman conserved
quantity of the system.

Keywords Weakly nonholonomic system · Appell
equations · Lie symmetry · Approximate Hojman
conserved quantity

1 Introduction

In recent years, research on the dynamics of nonholo-
nomic system has made great progress [1–7]. A spe-
cial nonholonomic system whose constraint equa-
tions contain a small parameter is called a weakly
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nonholonomic system. This system becomes a holo-
nomic system when the small parameter equals zero.
Researchers have already discussed the equations of
motion, approximate solution, canonical transforma-
tion, and stability of the weakly nonholonomic system
[8–10]. A previous study [11] examined the special
Mei symmetry and approximate conserved quantity of
Appell equations for a weakly nonholonomic system.
Appell equations are important in analytical mechan-
ics and belong to one of the three types of mechani-
cal systems in the theory of analytical mechanics. In
the recent 20 years, Chinese researchers have gained
fruitful achievements in research, promotion, and ap-
plication of Appell equations [12–17]. Since 2000,
Chinese researchers have made some achievements in
this research area, especially in Lie symmetry [35–47]
of constrained mechanical systems [18–34]. However,
there are fewer results on Appell equations. To solve
Appell equations, Mei Feng-Xiang first derived the
Noether conserved quantity deduced indirectly from
the Noether symmetry using Mei symmetry [48]. In
the present study, we examined Lie symmetry and
approximate Hojman conserved quantity for Appell
equations of a weakly nonholonomic system. First, the
Appell equations and their first-degree approximation
formulas were established for a weakly nonholonomic
system. Subsequently, the definition and criterion of
Lie symmetry were obtained. Then, the exact and ap-
proximate Hojman conserved quantities were directly
deduced from the Lie symmetry. Finally, an example
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has been given to illustrate the application of the theo-
retical results of this study.

2 Differential equations of motion of a weakly
nonholonomic system

Suppose that the position of a mechanical system is
determined by the n generalized coordinates, qs (s =
1,2, . . . , n), and whose motion is subject to the g ideal
bilateral homogeneous nonholonomic constraints of
Chetaev type

fβ = q̇ε+β − bBε+β,δ(t, qs)q̇δ = 0

(β = 1,2, . . . , g; δ = 1,2, . . . , ε; ε = n − g;
s = 1,2, . . . , n), (1)

where b is a small parameter. When b = 0, the con-
straint equation (1) becomes a constraint equation of
the holonomic system. The Chetaev condition of the
constraint equation (1) imposed on the virtual dis-
placement δqs is

∂fβ

∂q̇s

δqs = 0. (2)

The Appell function of the system is S = S(t,q, q̇, q̈),
and the generalized forces are Qs = Qs(t,q, q̇); thus,
the Appell equations of the system are

∂S

∂q̈s

= Qs + λβ

∂fβ

∂q̇s

, (3)

where λβ denotes the constraint multipliers in (3). If
the system is nonsingular, one can solve all the con-
straint multipliers λβ(t, b,q, q̇) using (1)–(2). Equa-
tion (3) can also be expressed as

∂S

∂q̈s

= Qs + Λs, (4)

where

Λs = Λs(t,q, q̇) = λβ

∂fβ

∂q̇s

(5)

are the generalized constraint forces. Equation (4) is
the equation of the holonomic system, correspond-
ing to those of the weakly nonholonomic system (1)
and (3). It has been proved that the solution of the
relevant holonomic system (4) corresponding to the
weakly nonholonomic system (1) and (3) will give the

motion if the initial conditions of motion satisfy the
constraint equation (1).

To discuss the approximate solution of the weakly
nonholonomic system, we can expand the generalized
constraint forces Λs as a power series

Λs = Λs0(t,q, q̇) + bΛs1(t,q, q̇)

+ b2Λs2(t,q, q̇) + · · · . (6)

Then, the first-degree approximation of (4) can be ex-
pressed as

∂S

∂q̈s

= Qs + Λs0 + bΛs1. (7)

Also, all generalized accelerations can be solved from
(4) and can be written as

q̈s = αs(t, b,q, q̇). (8)

From (7) we obtain

q̈s = αs0(t,q, q̇) + bαs1(t,q, q̇). (9)

3 Determining equation and definition of Lie
symmetry

Considering the Lie symmetry for (4) and (7), let us
take the special infinitesimal transformations of group
in which the time is invariable as

t∗ = t, q∗
s

(
t∗

) = qs(t) + 	qs, (s = 1, . . . , n).

(10)

Equation (10) can also be extended into

t∗ = t, q∗
s

(
t∗

) = qs(t) + εξs(t,q, q̇), (11)

where ε is an infinitesimal parameter, and ξs denotes
the generation functions of the infinitesimal transfor-
mations. By introducing the infinitesimal generator
vector X(0) and its first and second extended infinites-
imal generators X̃(1) and X̃(2), we get

X(0) = ξs

∂

∂qs

,

X̃(1) = X(0) + d̄ξs

dt

∂

∂q̇s

,

X̃(2) = X̃(1) + d̄

dt

d̄ξs

dt

∂

∂q̈s

.

(12)
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Since ∂S
∂q̈s

= d
dt

∂T
∂q̇s

− ∂T
∂qs

, the determining equation

of Lie symmetry (4) can be written as

X̃(2)

(
∂S

∂q̈s

)
= X̃(1)(Qs) + X̃(1)(Λs). (13)

Equation (8) can be written as

d̄

dt

d̄

dt
ξs = ∂αs

∂qk

ξk + ∂αs

∂q̇k

d̄

dt
ξk. (14)

Equation (7) can be obtained as

X̃(2)

(
∂S

∂q̈s

)
= X̃(1)(Qs) + X̃(1)(Λs0) + X̃(1)(bΛs1),

(15)

and (9) can be rewritten as

d̄

dt

d̄

dt
ξs = ∂(αs0 + bαs1)

∂qk

ξk + ∂(αs0 + bαs1)

∂q̇k

d̄

dt
ξk.

(16)

Definition 1 If the infinitesimal generator ξs satis-
fies (13) or (14), then the relevant symmetry is Lie
symmetry of the weakly nonholonomic system (1)
and (3) or holonomic system (4) corresponding to the
weakly nonholonomic system (1) and (3).

The restriction equation of Lie symmetry for the
weakly nonholonomic constraints (1) under the special
infinitesimal transformations (11) can be expressed as

X̃(1)
{
fβ(t, b,q, q̇)

} = 0. (17)

Definition 2 If the infinitesimal generator ξs satisfies
(13) or (14) and the restriction equation (17), then
the relevant symmetry is weakly Lie symmetry of the
weakly nonholonomic system (1) and (3) or holo-
nomic system (4) corresponding to the weakly non-
holonomic system (1) and (3).

Considering the Appell–Chetaev condition (2) im-
posed on the virtual displacement δqs , we have the fol-
lowing additional restriction equation:

∂fβ

∂q̇s

ξs = 0, (β = 1, . . . , g; s = 1, . . . , n). (18)

Definition 3 If the infinitesimal generator ξs satisfies
(13) or (14), the restriction equation (17), and the addi-
tional restriction equation (18), then the relevant sym-

metry is strong Lie symmetry of the weakly nonholo-
nomic system (1) and (3) or holonomic system (4) cor-
responding to the weakly nonholonomic system (1)
and (3).

Definition 4 If the infinitesimal generator ξs satisfies
(15) or (16), then the relevant symmetry is Lie symme-
try of the first-degree approximate holonomic system
(7) corresponding to the weakly nonholonomic system
(1) and (3).

Definition 5 If the infinitesimal generator ξs satisfies
(15) or (16) and the restriction equation (17), then the
relevant symmetry is weakly Lie symmetry of the first-
degree approximate holonomic system (7) correspond-
ing to the weakly nonholonomic system (1) and (3).

Definition 6 If the infinitesimal generator ξs satisfies
(15) or (16), the restriction equation (17), and the addi-
tional restriction equation (18), then the relevant sym-
metry is strong Lie symmetry of the first-degree ap-
proximate holonomic system (7) corresponding to the
weakly nonholonomic system (1) and (3).

4 Hojman conserved quantity deduced from the
special Lie symmetry

Proposition 1 [49] If the infinitesimal generator ξs

satisfies the determining equation (13) or (14) and if
the function μ = μ(t, q, q̇) satisfies the equation

∂αs

∂q̇s

+ d̄

dt
lnμ = 0, (19)

then the exact Hojman conserved quantity can be de-
duced from the Lie symmetry of Appell equations for
the weakly nonholonomic system (1) and (3), or the
corresponding holonomic system (4) is

IH = 1

μ

∂

∂qs

(μξs) + 1

μ

∂

∂q̇s

(
μ

d̄

dt
ξs

)
= const. (20)

Proposition 2 If the infinitesimal generator ξs satis-
fies (13) or (14) and the restriction equation (17), and
if the function μ = μ(t,q, q̇) satisfies (19), then the
exact Hojman conserved quantity (20) can be deduced
from weakly Lie symmetry of Appell equations for the
weakly nonholonomic system (1) and (3), or the corre-
sponding holonomic system (4).
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Proposition 3 If the infinitesimal generator ξs satis-
fies (13) or (14), the restriction equation (17), and the
additional restriction equation (18), and if the function
μ = μ(t,q, q̇) satisfies (19), then the exact Hojman
conserved quantity (20) can be deduced from strong
Lie symmetry of Appell equations for the weakly non-
holonomic system (1) and (3) or the corresponding
holonomic system (4).

Proposition 4 If the infinitesimal generator ξs satis-
fies (15) or (16), and if a function μ = μ(t,q, q̇) sat-
isfies

∂(αs0 + bαs1)

∂q̇s

+ d̄

dt
lnμ = 0, (21)

then the approximate Hojman conserved quantity (20)
can be deduced from Lie symmetry of Appell equations
for the first-degree approximate holonomic system (7).

Proof Taking the derivative of Eq. (20) with respect to
t , we can obtain

d̄

dt
IH = d̄

dt

(
1

μ

∂μ

∂qs

ξs

)
+ d̄

dt

∂ξs

∂qs

+ d̄

dt

[
1

μ

∂μ

∂q̇s

d̄

dt
ξs

+ ∂

∂q̇s

d̄

dt
ξs

]
. (22)

Furthermore, we can easily prove that

d̄

dt

∂

∂q̇s

d̄

dt
ξs = ∂

∂q̇s

d̄

dt

(
d̄

dt
ξs

)
− ∂

∂qs

d̄

dt
ξs

− ∂

∂q̇k

(
d̄

dt
ξs

)
,

d̄

dt

∂ξs

∂qs

= ∂

∂qs

d̄

dt
ξs − ∂(αk0 + bαk1)

∂qs

∂ξs

∂q̇k

.

(23)

By taking the partial derivative of (16) with respect to
q̇s and the summation of terms with subscript s, we
have

∂

∂q̇s

d̄

dt

(
d̄

dt
ξs

)
= ∂

∂q̇s

(
∂(αs0 + bαs1)

∂qk

ξk

)

+ ∂

∂q̇s

(
∂(αs0 + bαs1)

∂q̇k

d̄

dt
ξk

)
. (24)

By substituting (23) and (24) into (22), we have

d̄

dt
IH = d̄

dt

(
1

μ

∂μ

∂qs

ξs

)
+ d̄

dt

(
1

μ

∂μ

∂q̇s

d̄

dt
ξs

)

+ ∂2(αs0 + bαs1)

∂qk∂q̇s

ξk + ∂2(αs0 + bαs1)

∂q̇k∂q̇s

d̄

dt
ξk.

(25)

By using (21) we obtain

d̄

dt

(
1

μ

∂μ

∂qs

ξs

)
= −∂2(αs0 + bαs1)

∂qk∂q̇s

ξk + 1

μ

∂μ

∂qs

d̄

dt
ξs

− 1

μ

∂μ

∂q̇k

∂(αk0 + bαk1)

∂qs

ξs, (26)

d̄

dt

(
1

μ

∂μ

∂q̇s

d̄

dt
ξs

)

= −∂2(αs0 + bαs1)

∂q̇k∂q̇s

d̄

dt
ξk

− 1

μ

∂(αk0 + bαk1)

∂q̇s

∂μ

∂q̇k

d̄

dt
ξs

+ 1

μ

∂μ

∂q̇s

d̄

dt

(
d̄

dt
ξs

)
− 1

μ

∂μ

∂qs

d̄

dt
ξs . (27)

By substituting (26) and (27) into (25) we have

d̄

dt
IH = 1

μ

∂μ

∂q̇s

{
d̄

dt

(
d̄

dt
ξs

)
− ∂(αs0 + bαs1)

∂q̇k

d̄

dt
ξk

− ∂(αs0 + bαs1)

∂qk

ξk

}
= 0.

Thus, our proof is completed. �

Proposition 5 If the infinitesimal generator ξs satis-
fies (15) or (16) and the restriction equation (17), and
if the function μ = μ(t,q, q̇) satisfies (21), then the
approximate Hojman conserved quantity (20) can be
deduced from weakly Lie symmetry of Appell equa-
tions for the first-degree approximate holonomic sys-
tem (7).

Proposition 6 If the infinitesimal generator ξs satis-
fies (15) or (16), the restriction equation (17), and the
additional restriction equation (18), and if the func-
tion μ = μ(t,q, q̇) satisfies (21), then the approximate
Hojman conserved quantity (20) can be deduced from
strong Lie symmetry of Appell equations for the first-
degree approximate holonomic system (7).

5 An illustrative example

In the following, we have given an example to illus-
trate the application of the above-mentioned results.
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Let us consider a weakly nonholonomic system
where a particle of unit quality moves in the two-
dimensional space that is perpendicular to the Earth’s
surface and whose Appell function, generalized force,
and constraint equations are

S = 1

2

(
q̈2

1 + q̈2
2

)
, (28)

Q1 = 0, Q2 = −g, (29)

f = q̇2 − btq̇1 = 0. (30)

Let us now study the Lie symmetry and Hojman con-
served quantity of the system.

By substituting (28)–(30) into (3) we can get

q̈1 = −λbt, q̈2 = −g + λ. (31)

From (30) and (31) we obtain

λ = bq̇1 + g

1 + b2t2
. (32)

Thus, we have

q̈1 = −b2t q̇1 + btg

1 + b2t2
, q̈2 = bq̇1 − b2t2g

1 + b2t2
. (33)

According to the determining equation (14) of Lie
symmetry, we can obtain

ξ̈1 = − b2t

1 + b2t2
ξ̇1,

ξ̈2 = b

1 + b2t2
ξ̇1.

(34)

The above-mentioned equations (34) have the fol-
lowing solutions:

ξ1 = ξ2 = 1, (35)

ξ1 = 1, ξ2 =
(

q̇1 + btq̇2 − bq2 + 1

2
gbt2

)2

. (36)

The restriction equation (17) gives

ξ̇2 − bt ξ̇1 = 0. (37)

From the additional restriction equation (18) we get

ξ2 − btξ1 = 0. (38)

Apparently, the infinitesimal generators (35) and (36)
satisfy the restriction equation (37) but do not satisfy

the additional restriction equation (38), respectively.
Therefore, they are the respective infinitesimal gener-
ators of Lie symmetry and weakly Lie symmetry for
the weakly nonholonomic system.

Furthermore, from (18) we obtain

− b2t

1 + b2t2
+ d̄

dt
lnμ = 0. (39)

The above-mentioned equation (39) has the following
solutions:

μ =
√

1 + b2t2, (40)

μ =
√

1 + b2t2

(
q̇1 + btq̇2 − bq2 + 1

2
gbt2

)
. (41)

From (35), (40), and (20) we obtain

IH1 = 0 = const. (42)

From (35), (41), and (20) we get

IH2 = −b

(
q̇1 + btq̇2 − bq2 + 1

2
gbt2

)−1

= const.

(43)

From (36), (40), and (20) we obtain

IH3 = −2b

(
q̇1 + btq̇2 − bq2 + 1

2
gbt2

)
= const. (44)

Equations (36), (41), and (20) give

IH4 = −3b

(
q̇1 + btq̇2 − bq2 + 1

2
gbt2

)
= const. (45)

Based on Propositions 1 and 2, we know that IH1 ,
IH2 , IH3 , and IH4 are the exact Hojman conserved
quantity of Lie symmetry and weakly Lie symmetry
for the weakly nonholonomic system (31) or the cor-
responding holonomic system (33), where IH1 is the
common conserved quantity. As the infinitesimal gen-
erators (35) and (36) do not satisfy the additional re-
striction equation (38), from Proposition 3 we know
that these conserved quantities are not the exact Ho-
jman conserved quantity of strong Lie symmetry for
the weakly nonholonomic system (31) or the corre-
sponding holonomic system (33).

The first-degree approximate equations of (33) are

q̈1 = −btg, q̈2 = bq̇1. (46)
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The determining equation (16) of Lie symmetry gives

ξ̈1 = 0,

ξ̈2 = bξ̇1.
(47)

The above-mentioned equations (47) have the follow-
ing solutions:

ξ1 = ξ2 = 1, (48)

ξ1 = (q̇2 − bq1)
2, ξ2 = 0, (49)

ξ1 =
(

q̇1 + q̇2 − bq1 + 1

2
gbt2

)2

, ξ2 = 0. (50)

From the restriction equation (17) we get

ξ̇2 − bt ξ̇1 = 0. (51)

Furthermore, from the additional restriction equation
(18) we get

ξ2 − btξ1 = 0. (52)

The infinitesimal generators (48)–(50) satisfy the re-
striction equation (51) but do not satisfy the additional
restriction equation (52). Therefore, they can be con-
sidered as the infinitesimal generators of Lie symme-
try and weakly Lie symmetry for the first-degree ap-
proximate holonomic system.

From (21) we obtain

d̄

dt
lnμ = 0. (53)

The above-mentioned equation (53) has the following
solutions:

μ = 1, (54)

μ = q̇2 − bq1, (55)

μ = q̇1 + q̇2 − bq1 + 1

2
gbt2. (56)

Therefore, from (48), (54), and (20) we obtain

IH5 = 0. (57)

From (48), (55), and (20) we get

IH6 = −b(q̇2 − bq1)
−1 = const. (58)

From (48), (56), and (20) we can obtain

IH7 = −2b

(
q̇1 + q̇2 −bq1 + 1

2
gbt2

)−1

= const. (59)

Equations (49), (54), and (20) give

IH8 = −2b(q̇2 − bq1) = const. (60)

From (49), (55), and (20) we get

IH9 = −3b(q̇2 − bq1) = const. (61)

From (50), (54), and (20) we obtain

IH10 = −2b

(
q̇1 + q̇2 − bq1 + 1

2
gbt2

)
= const. (62)

From (50), (56), and (20) we can acquire

IH11 = −3b

(
q̇1 + q̇2 − bq1 + 1

2
gbt2

)
= const. (63)

According Propositions 4 and 5, we know that IH5 ,
IH6 , IH7 , IH8 , IH9 , IH10 , and IH11 are the approxi-
mate Hojman conserved quantities of Lie symmetry
and weakly Lie symmetry for the first-degree approx-
imate system (46), where IH5 is the common con-
served quantity. As the infinitesimal generators (48)–
(50) do not satisfy the additional restriction equation
(52), from Proposition 6 we know that these conserved
quantities are not the approximate Hojman conserved
quantities of strong Lie symmetry for the first-degree
approximate system (46).

By taking the derivatives of expressions (57)–(63)
with respect to time t , according to (31), we respec-
tively obtain

İH5 = 0,

İH6 = −b
q̈2 − bq̇1

(q̇2 − bq1)2
= b4t2q̇1 + b3t2g

(1 + b2t2)(q̇2 − bq1)2

= O
(
b3),

İH7 = −2b
q̈1 + q̈2 − bq̇1 + gbt

(q̇1 + q̇2 − bq1 + 1
2gbt2)2

= 2(b3t q̇1 + b4t2q̇1 + b3t2g − b4t3g)

(1 + b2t2)(q̇1 + q̇2 − bq1 + 1
2gbt2)2

= O
(
b3),

İH8 = −2b(q̈2 − bq̇1) = 2(b4t2q̇1 + gb3t2)

1 + b2t2

= O
(
b3),
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İH9 = −3b(q̈2 − bq̇1) = 3(b4t2q̇1 + gb3t2)

1 + b2t2

= O
(
b3),

İH10 = −2b(q̈1 + q̈2 − bq̇1 + gbt)

= 2(b3t q̇1 + b4t2q̇1 + b3t2g − b4t3g)

(1 + b2t2)

= O
(
b3),

İH11 = −3b(q̈1 + q̈2 − bq̇1 − gbt)

= 3(b3t q̇1 + b4t2q̇1 + b3t2g − b4t3g)

(1 + b2t2)

= O
(
b3).

Thus, the above-mentioned quantities are the ap-
proximate Hojman conserved quantities of the weakly
nonholonomic system.

6 Conclusions

This study examined the theory of Lie symmetry and
Hojman conserved quantity of Appell equations for a
weakly nonholonomic system, and analyzed the exact
and approximate Hojman conserved quantities. The
theoretical results apply not only to the weakly non-
holonomic system, when the small parameter b is zero,
but also to the holonomic system. The method through
which the approximate conserved quantity can be ob-
tained by expanding the generalized constraint force
Λs as a power series in small parameter b can also be
applied to other mechanical and physical systems with
other small parameters. Thus, the results of this study
have a great significance in improving and developing
Lie symmetry and conserved quantity of mechanical
system.
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