212 research outputs found

    Long term monitoring of mode switching for PSR B0329+54

    Full text link
    The mode switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the leading and trailing components is the predominant feature of mode switching. The intensity ratios between the leading and trailing components are measured for the individual profiles averaged over a few minutes. It is found that the ratios follow normal distributions, where the abnormal mode has a wider typical width than the normal mode, indicating that the abnormal mode is less stable than the normal mode. Our data show that 84.9% of the time for PSR B0329+54 was in the normal mode and 15.1% was in the abnormal mode. From the two passages of eight-day quasi-continuous observations in 2004, and supplemented by the daily data observed with 15 m telescope at 610 MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales are constrained with the Bayesian inference method. It is found that the gamma distribution with the shape parameter slightly smaller than 1 is favored over the normal, lognormal and Pareto distributions. The optimal scale parameters of the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes for the normal mode. The shape parameters have very similar values, i.e. 0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the abnormal mode, indicating the physical mechanisms in both modes may be the same. No long-term modulation of the relative intensity ratios was found for both the modes, suggesting that the mode switching was stable. The intrinsic timescale distributions, for the first time constrained for this pulsar, provide valuable information to understand the physics of mode switching.Comment: 31 pages,12 figures, Accepted by the Ap

    Predicting language learners' grades in the L1, L2, L3 and L4: the effect of some psychological and sociocognitive variables

    Get PDF
    This study of 89 Flemish high-school students' grades for L1 (Dutch), L2 (French), L3 (English) and L4 (German) investigates the effects of three higher-level personality dimensions (psychoticism, extraversion, neuroticism), one lower-level personality dimension (foreign language anxiety) and sociobiographical variables (gender, social class) on the participants' language grades. Analyses of variance revealed no significant effects of the higher-level personality dimensions on grades. Participants with high levels of foreign language anxiety obtained significantly lower grades in the L2 and L3. Gender and social class had no effect. Strong positive correlations between grades in the different languages could point to an underlying sociocognitive dimension. The implications of these findings are discussed

    Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant

    Full text link
    We present results from the high precision timing analysis of the pulsar-white dwarf (WD) binary PSR J1012+5307 using 15 years of multi-telescope data. Observations were performed regularly by the European Pulsar Timing Array (EPTA) network, consisting of Effelsberg, Jodrell Bank, Westerbork and Nan\c{c}ay. All the timing parameters have been improved from the previously published values, most by an order of magnitude. In addition, a parallax measurement of π=1.2(3)\pi = 1.2(3) mas is obtained for the first time for PSR J1012+5307, being consistent with the optical estimation from the WD companion. Combining improved 3D velocity information and models for the Galactic potential the complete evolutionary Galactic path of the system is obtained. A new intrinsic eccentricity upper limit of e<8.4×107e<8.4\times 10^{-7} is acquired, one of the smallest calculated for a binary system and a measurement of the variation of the projected semi-major axis also constrains the system's orbital orientation for the first time. It is shown that PSR J1012+5307 is an ideal laboratory for testing alternative theories of gravity. The measurement of the change of the orbital period of the system of P˙b=5(1)×1014\dot{P}_{b} = 5(1)\times 10^{-14} is used to set an upper limit on the dipole gravitational wave emission that is valid for a wide class of alternative theories of gravity. Moreover, it is shown that in combination with other binary pulsars PSR J1012+5307 is an ideal system to provide self-consistent, generic limits, based only on millisecond pulsar data, for the dipole radiation and the variation of the gravitational constant G˙\dot{G}.Comment: accepted for publication in MNRAS, 11 pages, 5 figures, 2 table

    The characteristics of millisecond pulsar emission: I. Spectra, pulse shapes and the beaming fraction

    Full text link
    We have monitored a large sample of millisecond pulsars using the 100-m Effelsberg radio telescope in order to compare their radio emission properties to the slowly rotating population. With some notable exceptions, our findings suggest that the two groups of objects share many common properties. A comparison of the spectral indices between samples of normal and millisecond pulsars demonstrates that millisecond pulsar spectra are not significantly different from those of normal pulsars. There is evidence, however, that millisecond pulsars are slightly less luminous and less efficient radio emitters compared to normal pulsars. We confirm recent suggestions that a diversity exists among the luminosities of millisecond pulsars with the isolated millisecond pulsars being less luminous than the binary millisecond pulsars. There are indications that old millisecond pulsars exhibit somewhat flatter spectra than the presumably younger ones. We present evidence that millisecond pulsar profiles are only marginally more complex than those found among the normal pulsar population. Moreover, the development of the profiles with frequency is rather slow, suggesting very compact magnetospheres. The profile development seems to anti-correlate with the companion mass and the spin period, again suggesting that the amount of mass transfer in a binary system might directly influence the emission properties. The angular radius of radio beams of millisecond pulsars does not follow the scaling predicted from a canonical pulsar model which is applicable for normal pulsars. Instead they are systematically smaller. The smaller inferred luminosity and narrower emission beams will need to be considered in future calculations of the birth-rate of the Galactic population.Comment: 40 pages, 14 figures, accepted for publication in Ap

    The international pulsar timing array project: using pulsars as a gravitational wave detector

    Full text link
    The International Pulsar Timing Array project combines observations of pulsars from both Northern and Southern hemisphere observatories with the main aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.Comment: accepted by Classical and Quantum Gravity. Review talk for the Amaldi8 conference serie

    The characteristics of millisecond pulsar emission: II. Polarimetry

    Full text link
    We have made polarimetric monitoring observations of millisecond pulsars visible from the northern hemisphere at 1410 MHz. Their emission properties are compared with those of normal pulsars. Although we demonstrated in paper I that millisecond pulsars exhibit the same flux density spectra and similar profile complexity, our results presented here suggest that millisecond pulsar profiles do not comply with the predictions of classification schemes based on ``normal'' pulsars. The frequency development of a large number of millisecond pulsar profiles is abnormal when compared with the development seen for normal pulsars. Moreover, the polarization characteristics suggest that millisecond-pulsar magnetospheres might not simply represent scaled versions of the magnetospheres of normal pulsars, supporting results of paper I. However, phenomena such as mode-changing activity in both intensity and polarization are recognized here for the first time (e.g., J1730--2304). This suggests that while the basic emission mechanism remains insensitive to rotational period, the conditions that, according to the canonical pulsar model, regulate the radio emission, might be satisfied at different regions in millisecond pulsar magnetospheres. At least three types of model have been proposed to describe the millisecond pulsar magnetospheres. A comparison of the predictions of these models with the observations suggests that individual cases are better explained by different processes. However, we show that millisecond pulsars can be grouped according to common emission properties, a grouping that awaits verification from future multifrequency observations.Comment: 38 pages, 8 figures, accepted for publication in ApJ, (see astro-ph/9801177 for paper I

    A millisecond pulsar in an extremely wide binary system

    Get PDF
    International audienceWe report on 22 yrs of radio timing observations of the millisecond pulsar J1024−0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869−0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = −1.0, T eff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024−0719. We conclude that PSR J1024−0719 and 2MASS J10243869−0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives , which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (P b > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s −1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024−0719 in light of its inclusion in pulsar timing arrays
    corecore