35 research outputs found
Cytoplasmic LXR expression is an independent marker of poor prognosis for patients with early stage primary breast cancer
International audiencePurpose The aim of this study was to investigate the expression of liver X receptors α/β (LXR) in primary breast cancer (BC) tissues and to analyze its correlations with clinicopathological parameters including patient survival. Methods In a well-characterized cohort of 305 primary BC, subcellular distribution of LXR was evaluated by immunohistochemistry. Correlations with clinicopathological characteristics as well as with patient outcome were analyzed. Results LXR was frequently localized in both nuclei and cytoplasms of BC cells, with stronger staining in nuclei. Total and nuclear LXR expression was positively correlated with ER and PR status. Overall survival analysis demonstrated that cytoplasmic LXR was significantly correlated with poor survival and appeared as an independent marker of poor prognosis, in stage I but not in stage II–III tumors Conclusion Altogether, these data suggest that cytoplasmic LXR could be defined as a prognostic marker in early stage primary BC
PROTEIN PHOSPHATASE 2A-B 'gamma Controls Botrytis cinerea Resistance and Developmental Leaf Senescence
Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'gamma is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'gamma regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'gamma to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'gamma is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'gamma depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'gamma age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.Peer reviewe
Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer-Evaluation of Several Markers with Real-Time Reverse Transcription-PCR
It is widely known that cells from epithelial tumors, e. g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs) in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19). B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy
PROTEIN PHOSPHATASE 2A-B'γ controls Botrytis cinerea resistance and developmental leaf senescence
Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In pre-senescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.</p
EP3 (prostaglandin E2 receptor 3) expression is a prognostic factor for progression-free and overall survival in sporadic breast cancer
Background: In various cancers, overexpression of cyclooxygenase (COX)-2 and elevated prostaglandin (PG) E2 synthesis have been associated with tumor development and progression. The potential of COX-2 inhibitors in cancer prevention and treatment has been shown repeatedly;however, their clinical use is limited due to toxicity. PGE2 signals via EP receptors 1-4, whose functions are analyzed in current research in search for targeted anti-PG therapies. EP2 and EP4 rather promote tumorigenesis, while the role of EP3, especially in breast cancer, is not yet clear and both pro-and anti-tumorigenic effects have been described. Our study evaluates EP3 receptor expression in sporadic breast cancer and its association with clinicopathological parameters, progression-free and overall survival. Methods: Two hundred eighty-nine sporadic breast cancer samples without primary distant metastasis were immunohistochemically analyzed for EP3 receptor expression. Tissue was stained with primary anti-EP3-antibodies. Immunoreactivity was quantified by the immunoreactivity-score (IRS);samples with an IRS >= 2 scored as EP3 positive. Chi-squared and Mann-Whitney-U test were used for comparison of data;Kaplan-Meier estimates and Cox-regression were used for survival analyses. Results: EP3 receptor was expressed in 205 of 289 samples analyzed (70.9%). EP3 receptor expression was not associated with clinicopathological parameters (e. g. tumor size, hormone receptors, lymph node status). Kaplan-Meier estimates showed a significant association of EP3 positivity with improved progression-free survival (p = 0.002) and improved overall survival (p = 0.001) after up to 10 years. Cox regression analysis confirmed EP3 positivity as a significant prognostic factor even when other known prognosticators were accounted for. Conclusions: In sporadic breast cancer, EP3 receptor expression is not significantly associated with clinicopathological parameters but is a significant prognostic factor for improved progression-free and overall survival. However, the functional aspects of EP3 receptor in breast cancer and the way how EP3 may oppose the pro-tumorigenic effects of PGE2 elevation and COX-2 overexpression are not fully understood so far. Further studies aiming at identification of the factors regulated by EP3 are necessary to evaluate the possibility of targeting EP3 in future anti-tumor therapy in breast cancer
Grundwasser - Altlasten - Boden aktuell
Neun Fachbeiträge dokumentieren die Ergebnisse der aktuellen Projekt- und Forschungsarbeit des Landesamtes in den Themenbereichen Grundwasser, Altlasten und Boden
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification
Abstract The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared to information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known non-pathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification. This article is protected by copyright. All rights reserved.Peer reviewe