56 research outputs found

    Influence of pulse sequence parameters at 1.5 T and 3.0 T on MRI artefacts produced by metal-ceramic restorations

    Get PDF
    Objectives: Susceptibility artefacts from dental materials may compromise MRI diagnosis. However, little is known regarding MRI artefacts of dental material samples with the clinical shapes used in dentistry. The present phantom study aims to clarify how pulse sequences and sequence parameters affect MRI artefacts caused by metal-ceramic restorations.Methods: A phantom consisting of nickel-chromium metal-ceramic restorations (i.e. dental crowns and fixed bridges) and cylindrical reference specimens immersed in agar gel was imaged in 1.5 and 3.0 T MRI scanners. Gradient echo (GRE), spin echo (SE) and ultrashort echo time (UTE) pulse sequences were used. The artefact area in each image was automatically calculated from the pixel values within a region of interest. Mean values for similar pulse sequences differing in one parameter at a time were compared. A comparison between mean artefact area at 1.5 and 3.0 T, and from GRE and SE was also carried out. In addition, a parametric correlation between echo time (TE) and artefact area was performed.Results: A significant correlation was found between TE and artefact area in GRE images. Higher receiver bandwidth significantly reduced artefact area in SE images. UTE images yielded the smallest artefact area at 1.5 T. In addition, a significant difference in mean artefact area was found between images at 1.5 and 3.0 T field strengths (p = 0.028) and between images from GRE and SE pulse sequences (p = 0.005).Conclusions: It is possible to compensate the effect of higher field strength on MRI artefacts by setting optimized pulse sequences for scanning patients with metal-ceramic restorations.peer-reviewe

    Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees

    Get PDF
    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.U.S. Military HIV Research ProgramCollaboration for AIDS Vaccine Discover (OPP1032817)National Institutes of Health (U.S.) (3R01AI080289-02S1)National Institutes of Health (U.S.) (5R01AI080289-03)United States. Army Medical Research and Materiel Command (National Institute of Allergy and Infectious Diseases (U.S.) Interagency Agreement Y1-AI-2642-12)Henry M. Jackson Foundation for the Advancement of Military Medicine (U.S.) (United States. Dept. of Defense Cooperative Agreement W81XWH-07-2-0067

    Influence of receiver bandwidth on MRI artifacts caused by orthodontic brackets composed of different alloys

    Get PDF
    Purpose: The aim of this in vitro study was to assess the role of bandwidth on the area of magnetic resonance imaging (MRI) artifacts caused by orthodontic appliances composed of different alloys, using different pulse sequences in 1.5 T and 3.0 T magnetic fields. Materials and methods: Different phantoms containing orthodontic brackets (ceramic, ceramic bracket with a stainless-steel slot, and stainless steel) were immersed in agar gel and imaged in 1.5 T and 3.0 T MRI scanners. Pairs of gradient-echo (GE), spin-echo (SE), and ultrashort echo time (UTE) pulse sequences were used differing in bandwidth only. The area of artifacts from orthodontic devices was automatically estimated from pixel value thresholds within a region of interest (ROI). Mean values for similar pulse sequences differing in bandwidth were compared at 1.5 T and 3.0 T using analysis of variance. Results: The comparison of groups revealed a significant inverse association between bandwidth values and artifact areas of the stainless-steel bracket and the self-ligating ceramic bracket with a stainless-steel slot (P<0.05). The areas of artifacts from the ceramic bracket were the smallest, but were not reduced significantly in pulse sequences with higher bandwidth values (P<0.05). Significant differences were also observed between 1.5 T and 3.0 T MRI using SE and UTE, but not using GE 2-dimensional or 3-dimensional pulse sequences. Conclusion: Higher receiver bandwidth might be indicated to prevent artifacts from orthodontic appliances in 1.5 T and 3.0 T MRI using SE and UTE pulse sequences.peer-reviewe

    Correlation among alveolar bone assessments provided by CBCT, micro-CT, and 14 T MRI

    Get PDF
    Objectives: The aim of this study was to evaluate bone mineral adipose tissue (BMAT) volume in 21 alveolar bone specimens, as determined by 14 T MRI, and correlate them to the radiodensity values obtained pre-operatively of regions of interest (ROIs) by cone beam computed tomography (CBCT), and to the bone-volume-to-tissue-volume ratio values obtained by micro-CT, the gold-standard for morphometric data collection. Methods: Partially edentulous patients were submitted to a CBCT scan, and the radiographic bone densities in each ROI were automatically calculated using coDiagnostiX software. Based on the CBCT surgical planning, a CAD/CAM stereolithographic surgical guide was fabricated to retrieve a bone biopsy from the same ROIs scanned preoperatively, and then to orientate the subsequent implant placement. The alveolar bone biopsies were then collected and scanned using the micro-CT and 14 T MRI techniques. Pearson’s correlation test was performed to correlate the results obtained using the three different techniques. Results: In the 21 eligible bone specimens (6 females, 15 males), age (mean age 52.9 years), micro-CT, and 14 T MRI variables were found to be normally distributed (p > 0.05). The strongest—and only statistically significant (p < 0.05)—correlation was found between micro-CT and 14 T MRI values (r = 0.943), and the weakest, between 14 T MRI and CBCT values (r =–0.068). Conclusions: The findings suggest that 14 T MRI can be used to evaluate BMAT as an indirect marker for bone volume, and that CBCT is not a reliable technique to provide accurate bone density values.peer-reviewe

    Assessment of alveolar bone marrow fat content using 15 T MRI

    Get PDF
    Objectives: Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner.Study design: A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm3) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans.Results: Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001).Conclusions: Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence.peer-reviewe

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages

    Get PDF
    To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals
    corecore