9 research outputs found

    Neutrophils are Mediators of Metastatic Prostate Cancer Progression in Bone

    Get PDF
    Bone metastatic prostate cancer (BM-PCa) significantly reduces overall patient survival and is currently incurable. Current standard immunotherapy showed promising results for PCa patients with metastatic, but less advanced, disease (i.e., fewer than 20 bone lesions) suggesting that PCa growth in bone contributes to response to immunotherapy. We found that: (1) PCa stimulates recruitment of neutrophils, the most abundant immune cell in bone, and (2) that neutrophils heavily infiltrate regions of prostate tumor in bone of BM-PCa patients. Based on these findings, we examined the impact of direct neutrophil-prostate cancer interactions on prostate cancer growth. Bone marrow neutrophils directly induced apoptosis of PCa in vitro and in vivo, such that neutrophil depletion in bone metastasis models enhanced BM-PCa growth. Neutrophil-mediated PCa killing was found to be mediated by suppression of STAT5, a transcription factor shown to promote PCa progression. However, as the tumor progressed in bone over time, neutrophils from late-stage bone tumors failed to elicit cytotoxic effector responses to PCa. These findings are the first to demonstrate that bone-resident neutrophils inhibit PCa and that BM-PCa are able to progress via evasion of neutrophil-mediated killing. Enhancing neutrophil cytotoxicity in bone may present a novel therapeutic option for bone metastatic prostate cancer

    Inhibition of Human Dendritic Cell ER Stress Response Reduces T Cell Alloreactivity Yet Spares Donor Anti-tumor Immunity

    Get PDF
    Acute graft- vs. -host disease (GVHD) is an important cause of morbidity and death after allogeneic hematopoietic cell transplantation (HCT). We identify a new approach to prevent GVHD that impairs monocyte-derived dendritic cell (moDC) alloactivation of T cells, yet preserves graft- vs.-leukemia (GVL). Exceeding endoplasmic reticulum (ER) capacity results in a spliced form of X-box binding protein-1 (XBP-1s). XBP-1s mediates ER stress and inflammatory responses. We demonstrate that siRNA targeting XBP-1 in moDCs abrogates their stimulation of allogeneic T cells. B-I09, an inositol-requiring enzyme-1α (IRE1α) inhibitor that prevents XBP-1 splicing, reduces human moDC migration, allo-stimulatory potency, and curtails moDC IL-1β, TGFβ, and p40 cytokines, suppressing Th1 and Th17 cell priming. B-I09-treated moDCs reduce responder T cell activation via calcium flux without interfering with regulatory T cell (Treg) function or GVL effects by cytotoxic T lymphocytes (CTL) and NK cells. In a human T cell mediated xenogeneic GVHD model, B-I09 inhibition of XBP-1s reduced target-organ damage and pathogenic Th1 and Th17 cells without impacting donor Tregs or anti-tumor CTL. DC XBP-1s inhibition provides an innovative strategy to prevent GVHD and retain GVL

    Functional Roles of Matrix Metalloproteinases in Bone Metastatic Prostate Cancer

    Get PDF
    Skeletal metastasis is a lethal component of many advanced cancers including prostate, the second most common cancer among men. Patients whose prostate cancer is localized and detected early benefit from multiple treatment options ranging from active surveillance to radiation and surgery, resulting in a 5-year survival rate of nearly 100%. Unfortunately, the prognosis and survival for patients with advanced metastatic disease is much worse due to the highly aggressive nature of the disease and a paucity of treatment options. Understanding the mechanisms and interactions that occur between metastatic cancer cells and the bone will enable the future treatment landscape for bone metastatic prostate cancer to expand, thereby improving patient outcomes. Our current knowledge of how metastatic prostate cancer cells interact with the bone is summarized in a model known as the “vicious cycle.” Numerous fundamental vicious cycle factors have been identified, including parathyroid hormone-related protein (PTHrP), while additional elements, such as matrix metalloproteinases (MMPs), are progressively being discovered and added to the model. PTHrP is a critical regulator of bone resorption and augments osteolysis in skeletal malignancies. In Chapter 2, we report that the mature PTHrP1-36 hormone is processed by MMPs to yield a stable product, PTHrP1-17. PTHrP1-17 retains the ability to signal through PTH1R to induce calcium flux and ERK phosphorylation but not cyclic AMP production or CREB phosphorylation. Notably, PTHrP1-17 promotes osteoblast migration and mineralization in vitro, and systemic administration of PTHrP1-17 augments ectopic bone formation in vivo. Further, in contrast to PTHrP1-36, PTHrP1-17 does not affect osteoclast formation/function in vitro or in vivo. Finally, immunoprecipitation-mass spectrometry analyses using PTHrP1-17-specific antibodies establish that PTHrP1-17 is indeed generated by cancer cells. Thus, MMP-directed processing of PTHrP disables the osteolytic functions of the mature hormone to promote osteogenesis, indicating important roles for this mechanism in bone remodeling in normal and disease contexts. MMPs have traditionally been associated with cancer progression based on their extracellular matrix degrading activities. However, it has become evident that their regulation of non-extracellular matrix substrates can exert both contributive and protective effects during tumorigenesis. Previous studies of matrix metalloproteinase-3 (MMP-3) have demonstrated tissue dependent pro- and anti-tumorigenic effects, but despite elevated expression, its roles have not been explored in bone metastatic prostate cancer. In Chapter 3, we show that tumor-derived MMP-3 contributes to prostate tumor growth in bone. In vitro, we observe that silencing MMP-3 reduces prostate cancer cell proliferation. Further, we found increased levels of IGFBP3, a known MMP-3 substrate, and decreased IGF-1R, ERK, and AKT phosphorylation in the MMP-3 silenced cells. Notably, we also observe reduced tumor growth and proliferation in in vivo intratibial models when tumor-derived MMP-3 expression is silenced. These data suggest that increased MMP-3 expression by prostate cancer cells contributes to their proliferation in bone by regulating the activity of the IGF/IGF-1R signaling axis. Taken together, our studies indicate that MMPs possess important functional roles in bone metastatic prostate cancer. We believe that elucidation of these mechanisms and their contributions to the vicious cycle of bone metastasis will offer novel opportunities to design effective therapeutic treatment options

    Generation of DNA Constructs and Cell Lines Over-Expressing the Subunits of the Gamma Secretase Complex in Alzheimer's Disease

    No full text
    (Statement of Responsibility) by Jeremy Frieling(Thesis) Thesis (B.A.) -- New College of Florida, 2010(Electronic Access) RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.(Source of Description) This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.(Local) Faculty Sponsor: Gilchrist, Sandr

    Proteolytic Regulation of Parathyroid Hormone-Related Protein: Functional Implications for Skeletal Malignancy

    No full text
    Parathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1–36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described. Studies of the protein sequence have indicated that PTHrP is susceptible to post-translational proteolytic cleavage by multiple classes of proteases with emerging evidence pointing to novel functional roles for these PTHrP products in regulating cell behavior in homeostatic and pathological contexts. As a consequence, PTHrP products are also being explored as potential biomarkers of disease. Taken together, our enhanced understanding of the post-translational regulation of PTHrP bioactivity could assist in developing new therapeutic approaches that can effectively treat skeletal malignancies

    Quantification and Optimization of Standard-of-Care Therapy to Delay the Emergence of Resistant Bone Metastatic Prostate Cancer

    No full text
    Background: Bone metastatic prostate cancer (BMPCa), despite the initial responsiveness to androgen deprivation therapy (ADT), inevitably becomes resistant. Recent clinical trials with upfront treatment of ADT combined with chemotherapy or novel hormonal therapies (NHTs) have extended overall patient survival. These results indicate that there is significant potential for the optimization of standard-of-care therapies to delay the emergence of progressive metastatic disease. Methods: Here, we used data extracted from human bone metastatic biopsies pre- and post-abiraterone acetate/prednisone to generate a mathematical model of bone metastatic prostate cancer that can unravel the treatment impact on disease progression. Intra-tumor heterogeneity in regard to ADT and chemotherapy resistance was derived from biopsy data at a cellular level, permitting the model to track the dynamics of resistant phenotypes in response to treatment from biological first-principles without relying on data fitting. These cellular data were mathematically correlated with a clinical proxy for tumor burden, utilizing prostate-specific antigen (PSA) production as an example. Results: Using this correlation, our model recapitulated the individual patient response to applied treatments in a separate and independent cohort of patients (n = 24), and was able to estimate the initial resistance to the ADT of each patient. Combined with an intervention-decision algorithm informed by patient-specific prediction of initial resistance, we propose to optimize the sequence of treatments for each patient with the goal of delaying the evolution of resistant disease and limit cancer cell growth, offering evidence for an improvement against retrospective data. Conclusions: Our results show how minimal but widely available patient information can be used to model and track the progression of BMPCa in real time, offering a clinically relevant insight into the patient-specific evolutionary dynamics of the disease and suggesting new therapeutic options for intervention. Trial registration: NCT # 01953640. Funding: Funded by an NCI U01 (NCI) U01CA202958-01 and a Moffitt Team Science Award. CCL and DB were partly funded by an NCI PSON U01 (U01CA244101). AA was partly funded by a Department of Defense Prostate Cancer Research Program (W81XWH-15-1-0184) fellowship. LC was partly funded by a postdoctoral fellowship (PF-13-175-01-CSM) from the American Cancer Society
    corecore