705 research outputs found

    The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    Get PDF
    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified

    Label-Free Optical Monitoring Of The Adhesion And Spreading Of Human Cells: High Throughput Analysis With Superior Sensitivity And Time Resolution

    Get PDF
    Here, we briefly discuss the past, present, and possible future of label-free optical biosensors in cell adhesion research. Currently available optical biosensors possess outstanding potentials still not rightfully recognized and still waiting to be fully exploited in the field. Thus, during the description we give special emphasis to the advantages the state-of-the-art optical cell-based biosensors possess as compared to microscope- or force- measurement based techniques that are currently much more generally used to characterize cell adhesion. To name here only a few, they enable label-free detection close to a planar sensor surface, have high sensitivity, and generate superior quality kinetic data. Such information-rich kinetic data, in turn, can be subjected to in-depth comparative and kinetic analysis. To exemplify the importance of in-depth kinetic analysis, we review a recent study, in which the Epic BenchTop high-throughput optical biosensor was used to measure the dependence of adhesion kinetics on the surface density of integrin ligands. Based on the kinetically analyzed data, a model enabling the label-free determination of the dissociation constant for the interaction between adhesion ligands and their native cell membrane receptors has been constructed

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space

    Get PDF
    We perform a tomographic baryon acoustic oscillations analysis using the two-point galaxy correlation function measured from the combined sample of BOSS DR12, which covers the redshift range of 0.2<z<0.750.2<z<0.75. Splitting the sample into multiple overlapping redshift slices to extract the redshift information of galaxy clustering, we obtain a measurement of DA(z)/rdD_A(z)/r_d and H(z)rdH(z)r_d at nine effective redshifts with the full covariance matrix calibrated using MultiDark-Patchy mock catalogues. Using the reconstructed galaxy catalogues, we obtain the precision of 1.3%−2.2%1.3\%-2.2\% for DA(z)/rdD_A(z)/r_d and 2.1%−6.0%2.1\%-6.0\% for H(z)rdH(z)r_d. To quantify the gain from the tomographic information, we compare the constraints on the cosmological parameters using our 9-bin BAO measurements, the consensus 3-bin BAO and RSD measurements at three effective redshifts in \citet{Alam2016}, and the non-tomographic (1-bin) BAO measurement at a single effective redshift. Comparing the 9-bin with 1-bin constraint result, it can improve the dark energy Figure of Merit by a factor of 1.24 for the Chevallier-Polarski-Linder parametrisation for equation of state parameter wDEw_{\rm DE}. The errors of w0w_0 and waw_a from 9-bin constraints are slightly improved when compared to the 3-bin constraint result.Comment: 14 pages, 21 figures, 7 Tables. Submitted to MNRA

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    Get PDF
    We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications

    Get PDF
    We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final BOSS DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, ω(θ)\omega(\theta), in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and type Ia supernova (SNIa). We explore a number of cosmological models, including the standard Λ\LambdaCDM model and its most interesting extensions, such as deviations from w_\rm{DE} = -1, non-minimal neutrino masses, spatial curvature and deviations from general relativity using the growth-index γ\gamma parametrisation. These results are, in general, comparable to the most precise present-day constraints on cosmological parameters, and show very good agreement with the standard model. In particular, combining CMB, ω(θ)\omega(\theta) and SNIa, we find a value of w_\rm{DE} consistent with −1-1 to a precision better than 5\% when it is assumed to be constant in time, and better than 6\% when we also allow for a spatially-curved Universe.Comment: 21 pages, 18 figures, accepted for publication MNRAS. The data used in this analysis is publicly available at https://sdss3.org/science/boss_publications.ph

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample

    Get PDF
    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    SDSS-III Baryon Oscillation Spectroscopic Survey data release 12 : galaxy target selection and large-scale structure catalogues

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.Publisher PDFPeer reviewe
    • …
    corecore