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ABSTRACT
We investigate the cosmological implications of studying galaxy clustering using a tomo-
graphic approach applied to the final Baryon Oscillation Spectroscopic Survey (BOSS) DR12
galaxy sample, including both auto- and cross-correlation functions between redshift shells.
We model the signal of the full shape of the angular correlation function, ω(θ ), in redshift
bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We
present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be
obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints
on cosmological parameters, combining this tomographic analysis with measurements of the
cosmic microwave background (CMB) and Type Ia supernova (SNIa). We explore a number of
cosmological models, including the standard � cold dark matter model and its most interesting
extensions, such as deviations from wDE = −1, non-minimal neutrino masses, spatial curvature
and deviations from general relativity (GR) using the growth-index γ parametrization. These
results are, in general, comparable to the most precise present-day constraints on cosmological
parameters, and show very good agreement with the standard model. In particular, combining
CMB, ω(θ ) and SNIa, we find a value of wDE consistent with −1 to a precision better than
5 per cent when it is assumed to be constant in time, and better than 6 per cent when we also
allow for a spatially curved Universe.
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1 IN T RO D U C T I O N

Along with measurements of the cosmic microwave background
(CMB) and distant Type Ia supernovae, large galaxy catalogues
tracing the large-scale structure (LSS) of the Universe, have be-
come one of the fundamental observables in observational cosmol-
ogy. The most widely used tools for the analysis of the LSS are
the so-called two-point statistics: the correlation function, and its
Fourier counterpart, the power spectrum. These measurements of
the clustering of galaxies encode information of both the expansion
history of the Universe and the growth of structure. In particular,

� E-mail: ssalazar@mpe.mpg.de (SSA); arielsan@mpe.mpg.de (AGS)

the baryon acoustic oscillation (BAO) signal imprinted on to these
two-point statistics, provides a very robust distance measurement,
relative to the sound horizon scale, that can be used to measure
the distance–redshift relation probing the expansion history of the
Universe.

The BAO signature in the galaxy distribution was simultaneously
measured for the first time by Eisenstein et al. (2005), using a spec-
troscopic subsample of luminous red galaxies of the Sloan Digital
Sky Survey (SDSS; York et al. 2000), and by Cole et al. (2005) in
the Two-degree Field Galaxy Redshift survey (Colless et al. 2001).
Since then, due to the wealth of information that galaxy surveys pro-
vide, much effort has been devoted to design and perform ever larger
galaxy-surveys, such as the Baryon Oscillation Spectroscopic Sur-
vey (BOSS; Dawson et al. 2013), WiggleZ (Drinkwater et al. 2010)
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and the Dark Energy Survey (The Dark Energy Survey Collabora-
tion 2005). Supported by this increasing amount of data, substantial
work has been devoted to modelling and detecting the BAO sig-
nal in two-point statistics and use it for cosmological constraints
(e.g. Percival et al. 2007; Spergel et al. 2007; Reid et al. 2010;
Blake et al. 2011; Samushia et al. 2013; Anderson et al. 2014;
Sánchez et al. 2014; Alam et al. 2016; Beutler et al. 2016). Future
projects, such as the Hobby–Eberly Telescope Dark Energy Exper-
iment (HETDEX; Hill et al. 2008), the Dark Energy Spectroscopic
Instrument (Levi et al. 2013), the Large Synoptic Survey Telescope
(LSST Science Collaboration et al. 2009) and the Euclid mission
(Laureijs et al. 2011), will continue on this path, further improving
our understanding of the Universe.

There are two important issues related to the traditional study
of LSS that need to be considered. First, in order to use the 3D
positions of galaxies, it is necessary to assume a fiducial cosmo-
logical model in order to transform the measured angular positions
on the sky and redshifts of galaxies into comoving coordinates
or distances, a process that could bias the parameter constraints
if not treated carefully (see e.g. Eisenstein et al. 2005; Sánchez
et al. 2009). Secondly, in order to obtain a precise measurement
of either the correlation function or the power spectrum, usually
the whole galaxy sample is used to obtain one measurement, typ-
ically averaging over a wide redshift range and assuming that the
measurement at the mean redshift is representative of the entire
sample, washing out information on the redshift evolution of the
structures.

A simple way to avoid the first issue is to use two-point statis-
tics based only on direct observables, i.e. only angular positions
and/or redshifts, such as the angular correlation function ω(θ ) or
the angular power spectrum C�. This is done by dividing the sample
into redshift bins, or shells, in order to recover information along
the line of sight, which otherwise would be lost due to projection
effects. Using the clustering in redshift shells solves the second
issue of the 3D analysis, providing information on the redshift evo-
lution of the galaxy-clustering signal, which can be leveraged to
put constraints on time-evolving quantities such as the galaxy bias
and the growth of structures. Recently, large amount of effort has
been committed to develop, test and apply different variation of
this methodology (e.g. Crocce, Cabré & Gaztañaga 2011a; Crocce
et al. 2011b; Ross et al. 2011; Sánchez et al. 2011; Asorey et al. 2012;
de Simoni et al. 2013; Asorey, Crocce & Gaztañaga 2014;
Di Dio et al. 2014; Salazar-Albornoz et al. 2014; Eriksen &
Gaztanaga 2015d; Eriksen & Gaztañaga 2015a,b,c; Carvalho
et al. 2016).

This paper extends and applies the clustering tomography anal-
ysis in Salazar-Albornoz et al. (2014) to the final galaxy sample
of BOSS. It complements a series of companion papers analysing
this sample (Alam et al. 2016; Chuang et al. 2016; Pellejero-Ibanez
et al. 2016; Satpathy et al. 2016; Tinker et al. in preparation; Vargas-
Magaña et al. 2016; Wang et al. 2016; Beutler et al. 2017a; Beutler
et al. 2017b; Grieb et al. 2017; Ross et al. 2017; Sánchez et al. 2017a;
Sánchez et al. 2017b; Zhao et al. 2017), and is organized in the fol-
lowing manner: Section 2 outlines our galaxy sample, our measure-
ments and the complementary data sets included in this study. In
Section 3, we describe our methodology, including the modelling
of the full shape (FS) of the angular correlation function in red-
shift shells, its analytical full covariance matrix, the optimization
of our binning scheme and the performance of this tomographic
approach on our set of mock galaxy catalogues. Section 4 presents
our measurements of the redshift evolution of the linear bias of the
BOSS galaxy sample, and the impact on cosmological constraints

of assuming different models for its evolution. Section 5 displays
our constraint on cosmological parameters for different parameter
spaces, obtained combining our measurements of the angular clus-
tering signal in redshift shells with other data sets. Final conclusions
are in Section 6.

2 TH E DATA

2.1 The Baryon Oscillation Spectroscopic Survey: DR12

For our galaxy-clustering measurements, we use the combined
sample of BOSS (Dawson et al. 2013) from the final SDSS-III
(Eisenstein et al. 2011) data release (DR12; Alam et al. 2015),
which consists of the combination of the LOWZ and CMASS sam-
ples, used separately in previous studies (e.g. Reid et al. 2010;
Sánchez et al. 2013, 2014; Anderson et al. 2014; Beutler et al. 2014;
Samushia et al. 2014; Cuesta et al. 2016), adding up to a sample of
over a million galaxies. BOSS galaxies were selected for spectro-
scopic follow up on the basis of the multicolour SDSS observations
(Gunn et al. 2006), covering the redshift range 0.15 < z < 0.75
over an area of ∼10 000 square degrees. The motivation for the
target selection and the algorithms used are described in Reid et al.
(2016). For each target, spectra were obtained using the double-
armed BOSS spectrographs (Smee et al. 2013), in order to extract
redshifts applying a template-fitting method described in Bolton
et al. (2012).

We used the estimator introduced by Landy & Szalay (1993) to
estimate the angular auto-/cross-correlation function between the
redshift shells p and q as

ω(p,q)(θi) = DD(p,q)
i − DR(p,q)

i − DR(q,p)
i + RR(p,q)

i

RR(p,q)
i

, (1)

where DDi, DRi and RRi are the data–data, data–random and
random–random pair counts in the i-th θ -bin, respectively. Note
that for p = q, one obtains the more familiar autocorrelation
estimator.

When computing these pair counts, we apply a series of angular
weights to account for observational systematic effects, such as red-
shift failures, fibre collisions, local stellar density and seeing. These
weights are described in detail in Ross et al. (2017). Each correlation
function is measured to a maximum angular separation θmax(z̄(p,q))
corresponding to a physical separation of ∼180 Mpc h−1 at the
mean redshift of the shell, z̄(p,q), in the fiducial BOSS DR12 cos-
mology (see Table 1) used in analyses based on this galaxy sample
(Alam et al. 2016; Chuang et al. 2016; Pellejero-Ibanez et al. 2016;
Satpathy et al. 2016; Wang et al. 2016; Beutler et al. 2017a,b;
Grieb et al. 2017; Ross et al. 2017; Sánchez et al. 2017a,b; Vargas-
Magaña et al. 2017; Zhao et al. 2017). We emphasize that the choice
of θmax is arbitrary and has no impact on our angular clustering
measurements. The total number of bins is chosen to be 18, with
varying �θ corresponding to ∼9 Mpc h−1 at the mean redshift of
the shell in the fiducial cosmology. These measurements, and their

Table 1. Cosmological parameters of the BOSS fiducial �CDM
cosmology.

Cosmological constant density parameter 	� 0.69
Matter density parameter 	m 0.31
Baryonic density parameter 	b 0.048
Dark energy equation of state wDE −1.0
Hubble constant (kms−1 Mpc−1) H0 67.6
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Figure 1. An autocorrelation function (left) and a cross-correlation function (right) between different redshift bins (see key) from the final BOSS galaxy
sample. Measurements are shown by red symbols, while the blue line shows the prediction of our model described in Sections 3.1 and 3.2, assuming the
best-fitting �CDM cosmology from the CMB temperature-anisotropy power spectrum as measured by the Planck satellite. Errors are derived from our
analytical model of the covariance matrix (see Section 3.3).

corresponding covariance matrix (see Section 3.3), have been made
publicly available.1

For illustration, Fig. 1 shows two measurements on the
combined sample (symbols), an autocorrelation function and a
cross-correlation function in the left-hand and right-hand panels
respectively, for different redshift shells (see key). The blue
solid lines correspond to the best-fitting prediction of the model
described in Sections 3.1 and 3.2, assuming the best-fitting �CDM
model from the latest CMB measurements made by the Planck
satellite (Planck Collaboration XIII 2016).

To test our models for the angular correlation function and its full
covariance matrix, we use a set of 1000 MultiDark-Patchy mock
catalogues (MD-PATCHY; Kitaura et al. 2016), which are designed to
match the characteristics of the final BOSS galaxy sample, follow-
ing its angular and radial selection function. These mock catalogues
also include redshift evolution of galaxy bias and the velocity field
(i.e. redshift-space distortions, RSD), a crucial characteristic for this
analysis. The results of these tests are presented in Section 3.5.

2.2 Additional data sets

In order to improve the cosmological constraints obtained in this
analysis, in Sections 4 and 5 we combine the information contained
in the FS of ω(θ ) and its redshift evolution with additional data sets.

We use high-� (� = 50–2500) CMB temperature plus the low-�
(� = 2–29) temperature+polarization power spectrum, from the lat-
est data release of the Planck satellite, corresponding to the ‘Planck
TT+lowP’ case in Planck Collaboration XIII (2016). We refer to
this data set simply as ‘Planck’, and to its combination with our
ω(θ ) measurements on BOSS as ‘Planck + ω(θ )’.

In addition, we use the luminosity–distance relation information
from Type Ia supernova (SNIa). To this end, we use the joint light-
curve analysis compilation (Betoule et al. 2014), which includes
SNIa data from the full SDSS-II (Frieman et al. 2008; Kessler
et al. 2009; Campbell et al. 2013) survey and the compilation in
Conley et al. (2011), comprising data from the Supernova Legacy

1 https://sdss3.org/science/boss_publications.php

Survey (Astier et al. 2006; Sullivan et al. 2011), the Hubble space
telescope (Riess et al. 2007; Suzuki et al. 2012) and several nearby
experiments. We only use this data set in combination with the other
two, thus whenever it is included, this is referred to as ‘Planck +
ω(θ ) + SNIa’.

3 M E T H O D O L O G Y

We base our methodology on that in Salazar-Albornoz et al. (2014),
extending for the inclusion of cross-correlations between differ-
ent shells. This description of ω(θ ) includes local and non-local
bias effects, non-linear growth of structures and RSD, but neglects
relativistic effects such as the integrated Sachs–Wolfe effect, lens-
ing and magnification bias (Yoo 2009; Yoo et al. 2009; Bonvin &
Durrer 2011; Challinor & Lewis 2011; Cardona et al. 2016), whose
effect on the clustering measurements from BOSS should be neg-
ligible. In Section 3.1, we model the projection of the clustering
signal on to angular coordinates for a general model. In Section 3.2,
we show the particular model for the 3D clustering of galaxies used
in this analysis. After that, our analytical model for the full covari-
ance matrix of ω(θ ) is shown in Section 3.3. Using these tools, we
optimize the binning scheme applied to BOSS in Section 3.4, to
finally test this methodology in Section 3.5.

3.1 Modelling ω(θ )

Given the redshift shells p and q, the angular auto-/cross-correlation
function is given by,

ω(p,q)(θ ) =
∫

dz1φ
p(z1)

∫
dz2φ

q (z2)ξ (s, μs), (2)

where φp(z) and φq(z) are the normalized selection functions of the
shells p and q respectively, and ξ (s, μs) is the anisotropic spatial
correlation function at the mean redshift z̄(p,q). We also need ex-
pressions for the comoving separation s and μs ≡ cos ϕ, the cosine
of the angle ϕ between the separation vector and the line of sight,
as a function of {z1, z2, θ}.
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Assuming that the geometry of the Universe is described by the
Friedmann-Robertson-Walker metric, the line-of-sight comoving
distance to a given redshift z is given by,

DC(z) = DHχ (z), (3)

where DH ≡ c
H0

is the Hubble distance, H0 is the value of the Hubble
constant today and χ (z) is given by

χ (z) =
∫ z

0

dz′

E(z′)
, (4)

defining E(z) ≡ H (z)
H0

. On the other hand, the transverse comoving
distance, defined as the comoving distance we would infer between
two objects at the same redshift knowing their angular and comoving
separation, is given by,

DM(z) =

⎧⎪⎨
⎪⎩

DH√|	K|SK [χ (z)] 	K �= 0

DHSK [χ (z)] 	K = 0

, (5)

where 	K is the curvature density parameter today, and SK[χ (z)] is
defined as

SK [χ (z)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sinh
(√

	Kχ (z)
)

	K > 0

χ (z) 	K = 0

sin
(√|	K|χ (z)

)
	K < 0

. (6)

With this, the comoving separation between two objects (galax-
ies), observed by us at different redshifts, and with an angular
separation θ on the sky, s(z1, z2, θ ), is given by

s(z1, z2, θ ) =

⎧⎪⎨
⎪⎩

DH√|	K|SK

[
χ(1,2)

]
	K �= 0

DHSK

[
χ(1,2)

]
	K = 0

, (7)

where χ (1, 2) is given by equation (4) as if object 1 were observ-
ing object 2 at the time the light observed by us was emitted, and
SK[χ (1, 2)] can be obtained from the spherical cosine rule (gen-
eralized for positive and negative curvature) as (Peacock 1999;
Liske 2000),

S2
K

[
χ(1,2)

] = S2
K [χ (z1)] C2

K [χ (z2)] + S2
K [χ (z2)] C2

K [χ (z1)]

−sgn(	K)S2
K [χ (z1)] S2

K [χ (z2)] sin2 θ

−2SK[χ (z1)] SK [χ (z2)] CK[χ (z1)] CK [χ (z2)] cos θ,

(8)

where CK is defined as

CK [χ (z)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosh
(√

	Kχ (z)
)

	K > 0

1 	K = 0

cos
(√|	K|χ (z)

)
	K < 0

. (9)

Note that when 	K = 0, equation (7) reduces to the well-known
Euclidean expression,

s(z1, z2, θ ) =
√

D2
C(z1) + D2

C(z2) − 2DC(z1)DC(z2) cos θ. (10)

The difference in using equation (7), compared to equation (10)
with the correct form of DM, is of the order of few per cent when
	K ∈ [−0.2, 0.2]. This difference translates directly into a shift of

the same order on the estimation of the BAO position, which can
be significant for a sample able to achieve per cent-level precision.

Similarly, using the (generalized) spherical sine rule, we can find
a simple expression for sin ϕ, the sine of the angle between the
separation vector and the line of sight, which is given by

sin ϕ = SK [χ (z1)] SK [χ (z2)] sin θ

SK

[
χ(1,2)

]
SK [χ ′]

, (11)

where DHχ ′ is the line-of-sight comoving distance between the
observer and the mid-point of the separation vector. Now, we only
need SK[χ ′] to calculate sin ϕ, and then take2 μs =

√
1 − sin2 ϕ.

Since SK[χ ′] is the median of the spherical triangle defined by z1, z2,
θ and the observer, using Stewart’s theorem we have the relation

CK

[
χ ′] = CK [χ (z1)] + CK [χ (z2)]

2CK

[ χ(1,2)
2

] . (12)

Note that this relation only works for 	K �= 0 and gives a trivial
solution for a flat geometry. In the case when 	K = 0, we should
use

μs = D2
M(z2) − D2

M(z1)

s
√

D2
M(z1) + D2

M(z2) + 2DM(z1)DM(z2) cos θ
. (13)

The difference between deriving μs using (11) for 	K �= 0, com-
pared to using equation (13) with the correct form of DM for any
value of 	K, is less than 0.2 per cent for the range of angular and
redshift separations we are considering, while the second case is
significantly faster to compute. For this reason, we compute μs

using equation (13) in our analysis later on.
When comparing the model for ω(θ ) with measurements, it is

important to take into account the effect of the binning in θ . Mea-
surements are not done over a single angle θ , but correspond to
the average over a bin centred on θ with a bin-width �θ . In order
to avoid systematic effects such as a shift in the BAO peak de-
termination, we consider in our analysis the bin-averaged angular
correlation function, evaluated at the bin θ i, given by

ω(θi) = 1

�	i

∫
�	i

d	 ω(θ ), (14)

where �	i is the solid angle given by

�	i = 2π

∫ θi+�θ/2

θi−�θ/2
dθ ′ sin θ ′. (15)

3.2 Anisotropic galaxy clustering

For the anisotropic spatial correlation function ξ (s, μs), we use
the same framework as in Sánchez et al. (2017a) (see also Grieb
et al. 2017 for Fourier-space), which is inspired in gRPT (Crocce,
Blas & Scoccimarro, in preparation) for the clustering of matter in
real space, and describes galaxy bias and RSD with four parameters:
two local bias parameters b1 and b2, a non-local bias parameter γ −

3

and one parameter for the fingers-of-god effect, avir, characterizing
the kurtosis of the velocity distribution within virialized structures.
In order to correctly model ω(p, q)(θ ), we need to compute the line-
of-sight projection of ξ (s, μs ; z̄(p,q)) as in equation (2). For this, we
need to consider that the galaxy bias evolves with redshift, as well
as the signal of the RSD and the non-linear growth of structures.
In practice, this means that the nuisance parameters of our model,

2 Note that we can drop the ±, and take the positive solution, since RSD are
symmetric around the line of sight.
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{b1, b2, γ
−
3 , avir} will have different values at different redshifts.

Here we describe how we treat the redshift evolution of ξ (s, μs), and
refer the reader to the papers mentioned above for a more detailed
description of the model in configuration and Fourier-space.

We assume that the redshift evolution of ξ (s, μs ; z̄(p,q)), including
all effects considered here, can be safely neglected within a single
measurement due to their smooth and monotonic evolution with
z (see section 3 in Salazar-Albornoz et al. 2014 and references
therein). This means quantities evaluated at z̄(p,q) are effectively
a combination of their mean values within the boundaries of the
redshift shells p and q, weighed by the corresponding φp(z) and
φq(z).

For the linear galaxy-bias parameter b1, we test three well-
motivated models. First, the vast majority of galaxies in BOSS
are old passively evolving galaxies (Leauthaud et al. 2016), this
motivates the use of the model in Fry (1996, hereafter F96), given
by

b1

(
z̄(p,q)

) = 1 + (b1 − 1)
D(zref )

D
(
z̄(p,q)

) , (16)

where D(z) is the linear-theory growth factor. On the other hand, it
has been shown empirically that the clustering amplitude of CMASS
galaxies does not evolve significantly with redshift (Reid et al. 2014;
Saito et al. 2016). If the amplitude of the matter density fluctuations
evolves (in the linear regime) with the linear growth factor, then the
galaxy bias needs to evolve as

b1

(
z̄(p,q)

) = b1
D(zref )

D
(
z̄(p,q)

) , (17)

in order to keep the amplitude of the galaxy-clustering signal con-
stant. This model is referred to as the constant galaxy-clustering
model (hereafter CGC). These two models relate the evolution of
the galaxy bias with the linear growth factor, which could lead to
biases in the cosmological parameters if the models are not correct.
For this reason, we also test a simple linear model that does not
depend on the cosmology, given by

b1

(
z̄(p,q)

) = b1 + b′ (z̄(p,q) − zref

)
, (18)

where b′ is an extra nuisance parameter to be fit when using this
model. We do not expect a redshift dependence of the quadratic bias
parameter b2.

The redshift evolution for the non-local bias parameter is given
by

γ −
3

(
z̄(p,q)

) = γ −
3

D(zref )

D
(
z̄(p,q)

) , (19)

while avir evolves with redshift as

avir

(
z̄(p,q)

) = avir

(
D

(
z̄(p,q)

)
D(zref )

)2

. (20)

Fig. 2 shows a comparison between the best-fitting model (blue
solid line) and the mean of the 1000 MD-PATCHY (symbols). Here
we use the bias model in equation (16), and the true underlying
linear matter power spectrum P(k). The upper panel shows one
of the autocorrelation functions measured, and the lower panel a
cross-correlation function. In both panels, the colour band shows
the dispersion corresponding to a single realization.

3.3 Analytical model for the full covariance matrix

Noise in covariance matrix estimates from mock catalogues prop-
agates to the recovered likelihood of cosmological parameters,

Figure 2. Comparison between the best-fitting model (blue solid line) and
the mean of the 1000 MD-PATCHY (symbols). The top panel shows an auto-
correlation function, and the bottom panel a cross-correlation function. In
both panels, the colour band shows the dispersion corresponding to a single
realization.

leading to an increase in the final errors in those parameters (Dodel-
son & Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival
et al. 2014; Taylor & Joachimi 2014). These uncertainties, and so
their correction, depend on the number of mock catalogues used to
estimate the covariance matrix, the number of bins in the data vector,
and the number of parameters to be constrained using this matrix.
In order to keep this extra source of uncertainty below 1 per cent,
it would be necessary to measure ∼105 independent mock cat-
alogues. Therefore, we use an analytical form instead, that has
been shown to be in excellent agreement with N-body simulations
(Crocce et al. 2011a; Salazar-Albornoz et al. 2014).

The full bin-averaged covariance matrix can be obtained as

Cov(m,n),(p,q)
i,j =

∑
�,�′≥2

(
2� + 1

4π

)2 [
L̂� (cos θi)

L̂�′
(
cos θj

)
Cov(m,n),(p,q)

�,�′
]
, (21)

where {m, n, p, q} denote for every redshift shell in our configu-
ration, L̂� (cos θi) is the bin-averaged Legendre polynomial of �-th
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Figure 3. Comparison between sections of the model (dashed and solid
lines) and the estimate from the mock catalogues (symbols). The upper panel
shows the square root of the diagonal of two sub-matrices corresponding
to an autocorrelation and a cross-correlation function measurement (see
key). The bottom panel shows the square root of vertical cuts of the same
sub-matrices at a fixed θ j bin.

order in the solid angle �	i defined by the angular bin θ i as

L̂�(cos θi) = 1

�	i

∫
�	i

d	L�(cos θi)

= 2π

�	i

1

2� + 1
[L�−1 (cos(θi + �θ/2))

−L�+1 (cos(θi + �θ/2)) − L�−1 (cos(θi − �θ/2))

+ L�+1 (cos(θi − �θ/2))] , (22)

and Cov(m,n),(p,q)
�,�′ is the covariance matrix of the angular power

spectrum C� which, assuming that the density field is a Gaussian
random field, is given by

Cov(m,n),(p,q)
�,�′ = δ��′

Ĉ
(m,p)
� Ĉ

(n,q)
� + Ĉ

(m,q)
� Ĉ

(n,p)
�

fsky(2� + 1)
. (23)

Here, δxy is the kronecker delta function, and Ĉ� is the angular
galaxy power spectrum, as it would be observed

Ĉ
(p,q)
� = C

(p,q)
� + δpq

n̄p
, (24)

where n̄p is the mean number of galaxies per steradian in the redshift
shell p, and 1/n̄p is the shot noise contribution to autocorrelations.

Assuming the BOSS fiducial cosmology, we compute the
redshift-space galaxy C

(p,q)
� using the CLASS code (Blas, Lesgour-

gues & Tram 2011), taking into account the specific radial selection,
and a linear bias evolution that fits that of the data (see Section 4)
normalized to the corresponding σ 8 in this cosmology.

For consistency, since we do not know a priori the true cosmology
of the Universe, we use this covariance matrix for the data analysis
and all the tests performed on our mock catalogues, irrespective of
their true fiducial cosmology. For illustration, Fig. 3 shows a com-
parison of some sections of the covariance-matrix model (dashed
and solid lines) against one estimated from the mocks (symbols).
The upper panel shows the square root of the diagonal of two

sub-matrices corresponding to an autocorrelation and a cross-
correlation function measurement (see key), and the bottom panel
shows the square root of vertical cuts of the same sub-matrices at a
fixed θ j bin.

3.4 Redshift binning optimization

The binning scheme in redshift shells is a significant variable to
consider for our analysis. Thinner shells result in a sharper BAO
feature, at the expense of increasing the statistical uncertainties (due
to the smaller number of objects) and the correlation between differ-
ent shells. Thicker shells, on the other hand, improve the statistical
errors, while lowering the BAO signal because it is projected over
a wider range of angular scales.

To maximize the constraining power of our analysis, we optimize
the number and the width of the redshift shells we use. Our opti-
mization is based on the binning strategy in Di Dio et al. (2014),
which defines the width �z of each shell in such a way that all of
them have the same number of galaxies. This results in a constant
shot noise in all our measurements, which is the main contributor
to the covariance matrix in a sample with the number density of
BOSS. In this procedure we use a smoothed version of the radial
number counts, N(z), in order to avoid our binning to be affected by
the clustering itself.

The criteria to define the optimal binning scheme is to maximize
the Figure-of-Merit (FoM) in the 	m–wDE plane, defined as

FoMwDE,	m = 1√
det[Cov(wDE, 	m)]

, (25)

where det[Cov(wDE, 	m)] is the determinant of the covariance ma-
trix between the two parameters being constrained. We only use
the cosmological information encoded in the FS of ω(θ ) for this
purpose.

First, we test our optimization procedure using only autocorre-
lations, exploring two different methods to compute the FoM for a
given configuration:

(i) a Fisher information-matrix analysis,
(ii) a Markov chain Monte Carlo (MCMC) analysis, based on

Salazar-Albornoz et al. (2014), using synthetic data.

Both methods are performed using our model of the full covari-
ance matrix of ω(θ ), and taking into account the specific character-
istics of BOSS (i.e. angular and radial selection function). Thus, the
optimal binning scheme found here is specific for BOSS, and does
not apply to other galaxy surveys. We perform two versions of the
MCMC analysis: one varying only the cosmological parameters,
and another one where we also include the nuisance parameters of
our model.

Fig. 4 shows the obtained values of the FoM for these three
tests, as a function of the number of redshift shells, Nshells. The
blue dashed line corresponds to the predictions from the Fisher ma-
trix analysis, the green dashed line shows the predictions from the
MCMC analysis when only wDE and 	m are allowed to vary and
the red solid line shows the results of the case where we also in-
clude the model nuisance-parameters in the MCMC analysis. While
the Fisher analysis always predicts a monotonically higher FoM as
the number of shells increases, none of the MCMC analyses shows
this behaviour, where the value of the FoM has a maximum and
then decays. This might be explained by the fact that the Fisher
matrix analysis approximates the shape of the posterior distribution
by a multivariate Gaussian, which in reality is not correct for this
combination of parameters. Thus, as Nshells increases, the reduction
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Figure 4. Figure-of-Merit constraining 	m–wDE as a function of the num-
ber of shells for the combined BOSS sample. The blue dashed line shows the
prediction using the Fisher matrix-information technique, the green dashed
line shows the prediction from the MCMC analysis when only the cosmo-
logical parameters are allowed to vary, and the red solid line shows that
of the case where we also include the model nuisance-parameters in the
MCMC analysis.

of the posterior-distribution surface (which is what the FoM is
actually estimating) is not equal for both methods. This, in the
Fisher analysis case, could compensate the loss of information in
the regime where the shot noise dominates (high Nshells).

Regarding the two different MCMC analysis, it is clear that the
inclusion of the nuisance parameters also changes the optimal value
of Nshells. For this reason, in the following we only use the ‘wDE −	m

+nuisance’ method.
Next, we extend the analysis of the optimal binning scheme by

including the cross-correlations between different redshift shells,
imposing two conditions:

(i) as before, each redshift shell must contain the same number
of galaxies and,

(ii) for each redshift shell, we include as many cross-correlations
with subsequent redshift shells as necessary to reach at least
120 Mpc h−1 (in the BOSS fiducial cosmology), i.e. past the BAO
scale in the line-of-sight direction. The cross-correlation signal is
already very close to zero, thus including measurements of redshift
shells that are further apart than the zero-crossing point of ξ does
not add extra information in our case.

In this test we also find that the maximum is consistent with the
previous tests, but the value of the FoM increases by a factor ∼2,
with respect to the case where we only use autocorrelations.

As a result, the optimal binning scheme for the combined sample
of BOSS is set to 18 redshift shells, each of them with ∼70 000
objects. The redshift limits of the optimal binning for the combined
sample are listed in Table A10. In Section 4 we show that, in order to
obtain robust cosmological constraints, we need to exclude the last
three redshift shells at z � 0.6. For this reason, the final configuration
consists of 40 measurements in total, 15 autocorrelation functions
and 25 cross-correlation functions, as shown in Fig. A1 in matrix
form.

3.5 Model performance on mock catalogues

We test our model for ω(θ ) and its full covariance matrix against the
combined-sample MD-PATCHY mock catalogues. We measure the an-
gular clustering using the binning scheme described in Section 3.4,
and perform fits to the mean of 1000 realizations and to a sub-
sample of 100 realizations individually. Through MCMC analy-
sis, we explore four parameter spaces that are extensions of the
standard �CDM model, allowing for curvature and a free dark en-
ergy equation-of-state parameter, wDE, constant in time; keeping the
spectral index ns and the baryon fraction fb fixed to their fiducial
value.

The first parameter space consists of

P1 = {	K,	� h2, wDE, ln(1010As), b1, b2, γ
−
3 , avir}, (26)

using the F96 bias-model in equation (16), and the CGC bias-model
in equation (17). The second parameter space is given by

P2 = P1 ∪ {b′}, (27)

using the redshift evolution of the linear galaxy bias as in
equation (18). The other two parameter spaces are defined as

P3 = P1 ∪ {γ }, (28)

P4 = P2 ∪ {γ }, (29)

where γ is the growth index, such that the growth rate factor, f =
∂ ln D
∂ ln a

, is approximated by (Linder 2005)

f (a) ≈ 	γ
m(a), (30)

and consequently the linear growth factor is

ln D(a) ≈
∫ a

a0

da

a
	γ

m(a), (31)

imposing the border condition D(a0)
a0

= 1 at some a0 in the matter-
dominated epoch. The value of γ = 0.55 recovers the predictions
of GR for D(a) and f(a), and any deviation from it (in the real
data) would suggest that the clustering measurements are in tension
with GR. We assume a Gaussian likelihood function of the form
L(P) ∝ exp

(−χ2(P)/2
)
, where

χ2 (P) = [m (P) − d]T Cov−1 [m (P) − d] , (32)

P is a vector with the parameter values, d is the full data vector
containing all the measurements of ω(p, q)(θ ), m (P) is the model
vector given P and Cov is the full covariance matrix described in
Section 3.3.

For each test we derive values of DM(zref), H(zref), f(zref) and
σ 8(zref) from the cosmological parameters, at the reference redshift
zref = 0.5. These quantities are more familiar in galaxy-clustering
analyses, and easier to refer to. We emphasize though, that these
are derived quantities, and we are not measuring them at that partic-
ular redshift, but rather constraining the cosmological parameters
through the FS of ω(θ ) and its redshift evolution.

We performed tests constraining P1 using F96 and P2 for dif-
ferent minimum angular scales, θmin(z̄(p,q)), using the mean of the
mocks. We find that using smaller angular scales than θmin(z̄(p,q)) =
20 Mpc h−1 (in the BOSS fiducial cosmology) results in biased con-
straints, while larger values only increase the errors without chang-
ing the mean. In the rest of this analysis, we use this minimum
scale.

The CGC model for the galaxy-bias evolution, given by
equation (17), does not describe b(z) of the mock catalogues, re-
sulting in biased constraints of �1σ in all the tests.
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Figure 5. Results from the tests, described in Section 3.5, of our tomographic technique applied to the mean of 1000 MD-PATCHY mock catalogues. The left-hand
panel shows derived constraints on DM(z = 0.5) and H(z = 0.5) on the parameter space given in equation (27). The central panel shows derived constrains on
fσ 8 at z = 0.5, on the same parameter space as the left-hand panel. The right-hand panel shows constraints on the growth index γ on the parameter space given
in equation (29).

Fig. 5 shows the results obtained using the mean of the mocks for
different tests. The left-hand panel shows constraints on DM(zref)
and H(zref) on P2, i.e. using the linear bias in equation (18). We do
not see any significant deviation in this case, finding 0.1σ and 0.3σ

for DM(zref) and H(zref) respectively. These deviations are somewhat
smaller, and the errors tighter, in the test on P1 using the F96 bias
model in equation (16). The middle panel shows constraints on
f(zref)σ 8(zref) on P2, and the right-hand panel shows the constraints
on the growth index γ on P4. In these two cases, the results on P1 and
P3, using the F96 model, are also unbiased and the errors smaller. In
all three panels, the fiducial values, shown by the dashed lines, are
those corresponding to the true cosmology of the MD-PATCHY mock
catalogues.

Fig. 6 shows the results of the same test, this time fitting the
subset of 100 mocks individually, constraining P2. The upper panel
shows the deviations from the true values on

α⊥ = DM(z)rfid
s (zd)

Dfid
M (z)rs(zd)

, (33)

the middle panel shows those of

α|| = H fid(z)rs(zd)

H (z)rfid
s (zd)

, (34)

and the lower panel the deviations on fσ 8 at zref, where rs(zd) is the
sound horizon at the drag redshift, and ‘fid’ stands for the fiducial
values in the mock’s cosmology. The error bars correspond to the
error from the individual fits, and the blue band corresponds to the
standard deviation of the sample. The solid and dashed lines are
the median and the mean of the distribution respectively, which
are practically indistinguishable because the individual values are
normally distributed.

Overall, these tests show that, through the redshift evolution of
the FS of ω(θ ), we can recover an expansion history and RSD infor-
mation that is in very good agreement with the fiducial cosmology
of the mocks, with the 0.3σ deviation in H(z) being the largest one.
These tests also confirm the importance of a sensible choice of a
model for the galaxy-bias evolution (see e.g. Clerkin et al. 2015),
and show that our simple linear model in equation (18) is flexible
enough for the description of the redshift evolution of the linear bias
of the BOSS galaxy sample.

Figure 6. Deviations between the true and the obtained values for the de-
rived parameters α⊥, α|| and fσ 8 at z = 0.5, from the individual fits (symbols)
on a subset of 100 MD-PATCHY mock catalogues. Error bars correspond to the
estimated error on each fit, while the blue bands show the sample standard
deviation. The upper panel shows the deviations on α⊥, the middle panel
shows the deviations on α|| and the lower panel shows those of fσ 8.

4 TH E L I N E A R B I A S O F T H E BO S S G A L A X Y
SAMPLE

Assuming the best-fitting �CDM cosmology from Planck, we mea-
sure the linear galaxy bias in each redshift shell in two ways. First,
we fit all autocorrelations independently (shell by shell), fitting b1

and marginalizing over b2 and σ 8, the amplitude of (linear-theory)
density fluctuations in spheres of R = 8 Mpc h−1. We impose a prior
on σ 8 from Planck. Secondly, we fit all redshift shells simultane-
ously, using each of our three models for b(z) (Linear, F96 and
CGC), and marginalizing over the other three nuisance parameters
of our model for ω(θ ). For comparison, we repeated the first test on
the mean of the MD-PATCHY mocks, using the correct PL(k) and σ 8

for the mocks cosmology.

4.1 The redshift evolution of the linear bias of boss galaxies

None of the models for the redshift evolution of the linear galaxy
bias used in this analysis is able to simultaneously fit, within the
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Figure 7. Redshift evolution of the linear galaxy bias. Red symbols show
individual fits to 18 ω(θ ) measurements on BOSS. The green band shows the
result of performing the same exercise on the mean of the MD-PATCHY mock
catalogues. The dashed lines show the 68 per cent and 95 per cent confidence
intervals obtained by fitting all clustering measurements simultaneously
(excluding the three highest redshift ones) with the bias model given in
equation (18).

errors, the first 16 measurements and the two high-redshift ones. A
possible explanation for this is that, above z � 0.6, the BOSS galaxy
sample behaves as a flux-limited one (see e.g. Saito et al. 2016), i.e.
only intrinsically bright galaxies can be observed at those distances,
while intrinsically fainter ones are not in the sample. On the other
hand, at z � 0.6, this galaxy sample is much closer to a volume-
limited sample, thus practically all galaxies brighter than a certain
absolute magnitude Mlim have been observed. In practice, this means
that above z � 0.6, the effective clustering amplitude is not repre-
sentative of a given galaxy population, but rather dominated by
observational systematics. This effect has not been observed before
in other clustering analyses of BOSS galaxies in redshift bins (Reid
et al. 2014; Saito et al. 2016), because the binning in those analyses
consisted in much wider redshift bins, hindering this variation in
the amplitude of the clustering signal.

Not being able to reproduce the linear bias, hence the clustering
amplitude of these high-redshift measurements has two important
consequences. An incorrect estimation of the linear galaxy bias, for
a given redshift shell, implies that all estimates of the covariance
in equation (21) including this redshift shell will be incorrect. Sec-
ondly, the F96 and CGC models depend on the growth factor D(z),
which encodes cosmological information. Then, non-cosmological
variations in the linear galaxy bias could result in biased cosmo-
logical constraints. For this reason, and in order to be conservative,
we exclude the galaxies above redshift z = 0.6 from the rest of the
analysis. This means that we do not use the last three high-redshift
bins, even though the 16th shell at z ∼ 0.6 seems to be within the
errors.

Fig. 7 shows the measured linear galaxy bias normalized by the
ratio of the corresponding σ 8 of each cosmology and the fiducial
one coming from the Planck prior. The individual measurements
are shown by the red circles, where error bars correspond to the
1σ marginalized error. The joint fit assuming the linear galaxy-bias

evolution of equation (18) is shown by the dashed lines, where
the different levels correspond to 1σ and 2σ confidence levels. We
exclude the last three high-redshift measurements from this fit. The
green band shows the 1σ region of the individual fits on the mean
of the mock catalogues.

4.2 The impact of the bias redshift evolution of boss galaxies
on cosmological constraints

We test the impact that assuming any of the three models for the
redshift evolution of the linear galaxy bias has on the obtained
cosmological constraints. For this we combine our measurements
of the FS of ω(θ ) with Planck, and perform an MCMC analysis.
Using each of the three models, we explore an extension of the
standard �CDM model, allowing for the dark energy equation-
of-state parameter, w, assumed to be constant in time, to deviate
from the canonical value of −1. The basic cosmological parameters
explored are listed in the first block of Table 2.

Fig. 8 shows the constraints on the total mass density parameter,
	m, and w, obtained from the ‘Planck + ω(θ )’ combination. The
blue dashed line corresponds to the use of the linear model for
b1(z), the red solid line to CGC and the green dash–dotted line
corresponds to the F96 bias model. Unlike what we find in the tests
on the mock catalogues in Section 3.5, where different assumptions
for the evolution of the linear galaxy bias result in differences in the
final cosmological constraints, the ‘Planck + ω(θ )’ combination
seems to be robust against the different assumptions within the
errors. The three mean values recovered in each case are within
0.16σ Linear from the linear bias case and, in both the CGC and the
F96 cases, the errors are only about 4 per cent tighter compared
to the linear case. Mean values and confidence intervals for the
linear case are shown in Section 5.2. Our interpretation is that, first,
the inclusion of CMB data breaks degeneracies within parameters
that are present in the ω(θ )-only likelihood function, which could
solve the 1σ deviation from the CGC model (assuming that the bias
evolution of the mocks represents well that of the data). Secondly,
the assumed models for the redshift evolution of the linear galaxy
bias are well motivated on the characteristics of BOSS galaxies (see
Section 3.2), thus large deviations are not expected.

5 C O S M O L O G I C A L C O N S T R A I N T S

In this section, we present constraints on cosmological parameters
for the standard �CDM model, as well as for eight different ex-
tensions described in the following subsections. For this purpose,
we use the 2015 July version of the publicly available MCMC code
COSMOMC (Lewis & Bridle 2002), modified to compute the model
for ω(θ ), including non-linearities, bias and RSD, described in Sec-
tions 3.1 and 3.2. Although we found in the previous section that,
after combining our angular clustering measurements with Planck,
the different assumptions for the redshift evolution of the linear
galaxy bias do not have a significant impact on the cosmological
constraints, here we take a conservative approach and only use the
linear model in equation (18).

Table 2 displays the cosmological parameters explored in these
analyses, the ranges in which they are allowed to vary, and fiducial
values in the case that a given parameter is fixed. The first block lists
the basic parameters varied in all cases, corresponding to those that
characterize the standard �CDM cosmological model. The second
block in the table lists those parameters that represent extensions of
the standard cosmological model explored in this analysis. The last
block in Table 2 displays derived parameters quoted in each case.
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Table 2. Summary of the cosmological parameters explored in this analysis. Basic �CDM parameters are in the first block, while those
of extended cosmological models are listed in the second block. The last block shows derived parameters quoted in every case.

Parameter Range Fiducial value Description

	b h2 [0.005, 0.1] – Physical baryon density
	c h2 [0.001, 0.99] – Physical CDM density
100θMC [0.5, 10] – Approximate angular size of rs at recombinationa

τ [0.01, 0.8] – Optical depth to the reionization epoch
ln (1010As) [2, 4] – Scalar spectral amplitudeb

ns [0.8, 1.2] – Scalar spectral indexb

w0 [−0.3, −3] −1 Present-day wDE

wa [−2, 2] 0 Time dependence of wDE

	K [−0.3, 0.3] 0 Curvature contribution to the energy density
�mν [0, 2] eV 0.06 eV Total sum of neutrino masses
γ [0, 2] – Growth index

H0 [20, 100] – Hubble constant
	m – – Present-day total

matter density
	� – – Dark energy density
σ 8 – – Amplitude of linear-theory density fluctuations

in spheres of R = 8 Mpc h−1

Age (Gyr) – – Age of the Universe

Notes. aAs defined in the 2015 July version of COSMOMC.
bQuoted at the pivot k0 = 0.05 Mpc−1.

Figure 8. Cosmological constraints obtained from the ‘Planck + ω(θ )’
combination using each of our three models for the redshift evolution of the
linear galaxy bias. Contours show the 68 per cent and 95 per cent confidence
intervals on the 	m–w plane.

As we do in Section 3.5, we assume Gaussian likelihood function
of the form L(P) ∝ exp

(−χ2(P)/2
)

for our clustering measure-
ments, where χ2 is computed as in equation (32).

Planck CMB constraints are only shown in figures for compar-
ison, and we quote results for the ‘Planck + ω(θ )’ and ‘Planck +
ω(θ ) + SNIa’ cases only. Summary tables are given in Appendix A
for readability, and in the text we only quote values of the most
relevant parameters for each cosmological model. In every case, the
values and confidence intervals correspond to those obtained after
marginalizing over all other parameters.

Figure 9. Marginalized 68 per cent and 95 per cent confidence interval con-
straints in the 	m–H0 plane. The blue dashed line corresponds to Planck-
only constraints, the solid orange line corresponds to the constraints obtained
from the Planck + ω(θ ) combination and the green dash–dotted line to those
obtained combining Planck + ω(θ ) + SNIa.

5.1 The standard �CDM model

We start out with the basic case: the �CDM model. This model
has become the standard cosmological model due to its astonish-
ing description and prediction capabilities, regarding a large list of
observables.

Fig. 9 shows the marginalized 68 per cent and 95 per cent con-
fidence interval in the 	m–H0 plane. The blue dashed line cor-
responds to Planck-only constraints, the solid orange line shows
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Figure 10. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the 	m–w plane. The blue dashed line corresponds to Planck-
only constraints, the solid orange line corresponds to the constraints obtained
from the Planck + ω(θ ) combination and the green dash–dotted line to those
obtained combining Planck + ω(θ ) + SNIa.

the constraints obtained from the Planck + ω(θ ) combination
and the green dash–dotted line shows those obtained combining
Planck + ω(θ ) + SNIa. We find that including our angular clus-
tering measurements improves the constraints, and the subsequent
addition of SNIa slightly shifts the allowed region towards higher
values of H0 and does not represent a significant improvement.
We also find that the Planck + ω(θ ) combination selects the high-
est values of 	m allowed by Planck, as opposed to previous 3D
clustering analyses on BOSS (see e.g. Sánchez et al. 2013; An-
derson et al. 2014). Nevertheless, our results and those mentioned
are consistent within 1σ . We found 	m = 0.319 ± 0.011 for the
Planck + ω(θ ) combination, and 	m = 0.317 ± 0.011 including
SNIa. Table A1 shows marginalized constraints for all the parame-
ters varied in this case, as well as the derived parameters.

5.2 The dark energy equation-of-state parameter

Although the standard �CDM model is sufficient to describe the
expansion history of the Universe, as probed by the CMB power
spectrum, galaxy-clustering measurements and SNIa, the combi-
nation of all these observables allows us to test assumptions and
generalizations of it. One of such assumptions is that the dark en-
ergy component of the Universe is characterized by an equation of
state PDE/ρDE ≡ wDE = −1 constant in time. Thus the first tested
extension of the standard cosmological model is to treat wDE as a
free parameter (wCDM model), assuming it is constant in time.

Fig. 10 shows the marginalized 68 per cent and 95 per cent
confidence interval constraints in the 	m–w plane. As before,
the blue dashed line corresponds to Planck-only constraints, the
solid orange line to the results obtained from the Planck + ω(θ )
combination and the green dash–dotted line to those obtained
combining Planck + ω(θ ) + SNIa. We find that including our angu-
lar clustering measurements significantly improves the constraints
obtained by Planck, where we found a value of 	m = 0.328 ± 0.016
and w = −0.958+0.063

−0.055, in very good agreement with the �CDM

results. In this case, the Planck + ω(θ ) + SNIa combination im-
proves the constraints even more, resulting in 	m = 0.319 ± 0.012
and w = −0.991 ± 0.046, again in very good agreement with the
�CDM case. A summary of the constraints obtained in this case
can be found in Table A2.

Next, we allow wDE to vary over time (w0waCDM model), fol-
lowing the standard linear parametrization of Chevallier & Polarski
(2001) and Linder (2003) (CPL), given by

wDE(a) = w0 + wa(1 − a). (35)

The marginalized 68 per cent and 95 per cent confidence interval
constraints, in the w0–wa plane, are shown in the left-hand panel of
Fig. 11. In this case, we see a strong degeneracy between these two
parameters for the Planck only and the Planck + ω(θ ) combinations,
where the fiducial �CDM values for these parameters, shown by
the dotted lines, are only within the 95 per cent confidence interval,
suggesting a mild tension with the standard cosmological model.
Nevertheless, adding SNIa breaks this degeneracy and eliminates
this tension. In this case, we find w0 − 0.94 ± 0.13 and wa =
−0.23+0.51

−0.42. Table A3 summarizes the cosmological constraints for
this case.

5.3 Non-spatially-flat Universes

Another assumption of the standard �CDM model is that the Uni-
verse is spatially flat, which implies that its total energy density
is equal to the critical one. We test this assumption of flatness by
including the 	K parameter.

The first case we analyse assumes wDE ≡ −1 (kCDM model).
Fig. 12 shows the marginalized 68 per cent and 95 per cent con-
fidence interval constraints in the 	K−	� plane, where the dot-
ted diagonal line corresponds to spatially-flat Universes. It can be
seen that relaxing the flat-space condition opens a large degeneracy
in the CMB-only constraints, and that this degeneracy is broken
adding low-redshift measurements of the expansion history of the
Universe, greatly improving the constraints. For the Planck + ω(θ )
combination, we find 	m = 0.329+0.014

−0.016, 	� = 0.676 ± 0.013 and
	K = −0.0043+0.0042

−0.0035, while for the full Planck + ω(θ ) + SNIa
combination, we find 	m = 0.324+0.011

−0.014, 	� = 0.679+0.013
−0.009 and

	K = −0.0028 ± 0.0038, in excellent agreement with a spatially
flat Universe, as well as with the results for the �CDM case. A
summary of the constraints obtained in this case can be found in
Table A4.

We also include wDE as a free parameter in this case, assum-
ing that its value is constant in time (wkCDM model). A summary
of the constraints for this case can be found in Table A5. Fig. 13
shows the marginalized 68 per cent and 95 per cent confidence in-
terval constraints in the w–	K plane. As always, the blue dashed
line corresponds to Planck-only constraints, the solid orange line
corresponds to the constraints obtained from the Planck + ω(θ )
combination and the green dash–dotted line to those obtained com-
bining Planck + ω(θ ) + SNIa. Again this time, it can be seen that
the inclusion of our ω(θ ) measurements on BOSS, to the CMB-only
ones, significantly improves the cosmological constraints, where
we find a value of w = −1.00+0.10

−0.075 and 	K = −0.0037+0.0057
−0.0051.

Also, including SNIa further tightens the constraints, resulting in
w = −1.025+0.064

−0.055 and 	K = −0.0040+0.0054
−0.0041, once again, in perfect

agreement with the standard cosmological model.

5.4 Massive neutrinos

Observations of neutrino oscillations (i.e. a change in neutrino
flavour) imply that at least two neutrino species have non-zero mass.
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Figure 11. Left: Marginalized 68 per cent and 95 per cent confidence interval constraints in the w0–wa plane. The blue dashed line corresponds to Planck-only
constraints, the solid orange line corresponds to the constraints obtained from the Planck + ω(θ ) combination and the green dash–dotted line to those obtained
combining Planck + ω(θ ) + SNIa. Right: Marginalized 68 per cent and 95 per cent confidence interval constraints on the redshift evolution of wDE(z) using
the CPL parametrization. The blue dashed line corresponds to Planck-only constraints, the solid orange line corresponds to the constraints obtained from the
Planck + ω(θ ) combination and the green dash–dotted line to those obtained combining Planck + ω(θ ) + SNIa.

Figure 12. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the 	m−	� plane, relaxing the flat-space condition. The
blue dashed line corresponds to Planck-only constraints, the solid or-
ange line corresponds to the constraints obtained from the Planck + ω(θ )
combination and the green dash–dotted line to those obtained combining
Planck + ω(θ ) + SNIa.

This is one of the most significant discoveries in the last decades,
providing decisive evidence that the Standard Model (of particle
physics) needs to be extended. Actually, it was for this very impor-
tant discovery (Fukuda et al. 1998; Ahmad et al. 2001, 2002) that
Takaaki Kajita and Arthur B. McDonald were awarded the Nobel
Prize in Physics last year.3

Although the fact that neutrinos have mass is well established,
precise measurements of their mass is a very difficult task. The best
upper limits from laboratory experiments, through tritium decay, are

3 ‘The 2015 Nobel Prize in Physics – Press Release’. Nobel-
prize.org. Nobel Media AB 2014. www.nobelprize.org/nobel_prizes/
physics/laureates/2015/press.html

Figure 13. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the w–	K plane. The blue dashed line corresponds to Planck-
only constraints, the solid orange line corresponds to the constraints obtained
from the Planck + ω(θ ) combination and the green dash–dotted line to those
obtained combining Planck + ω(θ ) + SNIa.

mνe < 2 eV for electron neutrinos (see Weinheimer & Zuber 2013
for a review of different experiments). Nevertheless, the best con-
straints in their total-mass sum, including all species, come from
cosmological observations. Relic neutrinos generated in very early
Universe are almost as abundant as photons, and they form what is
known as the cosmic neutrino background (CνB). At the present, it
is not possible to observe the CνB, but these primordial neutrinos
have two important consequences for cosmology. First, they de-
couple from the other components before photons, free-streaming
through the baryon–photon plasma and washing out small-scale
anisotropies. Secondly, their mass affects the expansion rate H,
especially at early stages.

The scales in clustering measurements affected by neutrinos are
beyond what we are able to currently model, but we certainly can
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Figure 14. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the

∑
mν/eV−H0 plane. The blue dashed line corresponds to

Planck-only constraints, the solid orange line corresponds to the constraints
obtained from the Planck + ω(θ ) combination and the green dash–dotted
line to those obtained combining Planck + ω(θ ) + SNIa.

constrain the effect of neutrinos on the expansion rate. For this, in
this section we treat the total sum of neutrino masses,

∑
mν , as a

free parameter, assuming three species of equal mass. We obtain
constraints within the �CDM and wCDM framework.

Fig. 14 shows the marginalized 68 per cent and 95 per cent con-
fidence interval constraints in the

∑
mν/eV−H0 plane, fixing wDE

≡ −1. For the Planck + ω(θ ) combination, we find
∑

mν/eV <

0.207(0.400) 68 per cent (95 per cent) confidence interval (C.I.) up-
per limits, while for the full Planck + ω(θ ) + SNIa combination,
we find

∑
mν/eV < 0.169(0.330) 68 per cent (95 per cent) C.I.

upper limits, representing one of the tightest constraints at the
present (see e.g. de Haan et al. 2016; Moresco et al. 2016; Alsing,
Heavens & Jaffe 2017; Yeche et al. 2017 and our companion pa-
pers). A summary of the constraints obtained in this case can be
found in Table A6.

The results of also treating wDE as a free parameter are shown
in Table A7. Fig. 15 shows the marginalized 68 per cent and
95 per cent confidence interval constraints in the

∑
mν/eV−w

plane. In this case, for the Planck + ω(θ ) combination we find∑
mν/eV < 0.221(0.486) 68 per cent (95 per cent) C.I. upper lim-

its, while for the full Planck + ω(θ ) + SNIa combination, we find∑
mν/eV < 0.229 (0.474) 68 per cent (95 per cent) C.I. upper lim-

its. Note that the inclusion of SNIa increases the 68 per cent C.I.
upper limit, decreasing the 95 per cent C.I. one, marginally sug-
gesting non-zero masses, although we cannot claim a detection.
Also, including

∑
mν as a free parameter does not significantly de-

grade our constraints in w, resulting in w = −1.023+0.063
−0.053 for the

full P lanck + ω(θ ) + SNIa combination.

5.5 Deviations from general relativity

The last assumption of the �CDM model that we test in this anal-
ysis is that of space–time being described by the theory of GR. A
thorough analysis of different theories beyond GR requires modifi-
cations to our methodology, such as the way the expansion history of

Figure 15. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the

∑
mν/eV−w plane. The blue dashed line corresponds to

Planck-only constraints, the solid orange line corresponds to the constraints
obtained from the Planck + ω(θ ) combination and the green dash–dotted
line to those obtained combining Planck + ω(θ ) + SNIa.

the Universe is parametrized, which is out of the scope of this work.
However, we perform a simple null test, following the parametriza-
tion for linear perturbation growth of Linder (2005), which is de-
coupled from the expansion history. To a sub per cent accuracy, the
growth rate f ≡ ∂ ln D

∂ ln a
can be approximated as in equation (30),

where a value of

γ = 0.55 + 0.05(1 + wDE(z = 1)), (36)

for the growth index parameter recovers the prediction of GR. Thus,
any deviation from this value, treating γ as a free parameter, would
suggest that GR should be revised.

First, we assume the standard �CDM as the background cos-
mological model. A summary of the obtained constraints can be
found in Table A8. Fig. 16 shows the marginalized 68 per cent
and 95 per cent confidence interval constraints in the 	m–γ plane.
Since CMB cannot be used to measure f(z) and thus constrain γ ,
Planck-only contours are not shown, and the blue dashed line cor-
responds to the constraints obtained by the Planck + ω(θ ) com-
bination, while the solid orange line to those obtained combining
Planck + ω(θ ) + SNIa. For the former, we find 	m = 0.317+0.011

−0.013

and γ = 0.67 ± 0.15. Then, similar to what we obtain for the �CDM
results, adding SNIa does not significantly improve the constraints,
resulting in 	m = 0.315 ± 0.011 and γ = 0.68 ± 0.14. Both data set
combinations result in constraints that are in good agreement with
GR within 1σ , as well as with our previous results for the basic
�CDM case.

Finally, constraints obtained also treating wDE as a free param-
eter, assuming that it is constant in time, are listed in Table A9.
Fig. 17 shows the marginalized 68 per cent and 95 per cent con-
fidence interval constraints in the w–γ plane. The vertical dot-
ted line marks w = −1, while the other one follows equation
(36). Using the Planck + ω(θ ) combination, we obtain a value of
w = −0.980 ± 0.092 and γ = 0.64+0.21

−0.23. Adding the information
from SNIa tightens the constraints, resulting in w = −1.013+0.052

−0.047

and γ = 0.70+0.16
−0.18. Both sets of constraints are again in good agree-

ment with the standard �CDM model and GR.

MNRAS 468, 2938–2956 (2017)



Clustering tomography on the BOSS DR12 sample 2951

Figure 16. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the 	m–γ plane. The blue dashed line corresponds to the
constraints obtained by the Planck + ω(θ ) combination, and the solid orange
line to those obtained combining Planck + ω(θ ) + SNIa. The dotted line
shows the value of γ that recovers the GR prediction for the growth rate f,
following equation (36).

Figure 17. Marginalized 68 per cent and 95 per cent confidence interval
constraints in the w–γ plane. The blue dashed line corresponds to the con-
straints obtained by the Planck + ω(θ ) combination, and the solid orange
line to those obtained combining Planck + ω(θ ) + SNIa. The (almost) hor-
izontal dotted line shows the value of γ that recovers the GR prediction for
the growth rate f, following equation (36).

5.6 Comparison to companion papers

This work forms part of a collective effort consisting of a number
of different analyses of the completed BOSS combined sample,
which compliment, support and converge in Alam et al. (2016). FS
anisotropic clustering measurements, in 3D configuration-space as
well as in Fourier-space, are presented in Beutler et al. (2017b),
Grieb et al. (2017), Sánchez et al. (2017a) and Satpathy et al.

(2016). Anisotropic BAO-only measurements post-reconstruction
(Eisenstein, Seo & White 2007; Padmanabhan et al. 2012) are pre-
sented in Beutler et al. (2017a), Ross et al. (2017) and Vargas-
Magaña et al. (2017). All these different methods are optimally
combined following the method exposed in Sánchez et al. (2017b),
and used in Alam et al. (2016) to constraint a variety of parameter
spaces for different cosmological models.

In this analysis we do not derive intermediate measurements,
between the clustering of galaxies and the final cosmological con-
straints, as is the case of the analyses mentioned above using a
more standard approach, where DM, H and fσ 8 is measured. For
this reason it is difficult to directly compare to our companion pa-
pers, unless we do something similar to what is done in Section 3.5,
although this would always be in the context of the cosmological
model assumed to derive distance measurements from ω(θ ).

A more quantitative comparison would be to compare the con-
straints themselves for each parameter spaces explored. Although,
it should be noted that in Alam et al. (2016) the CMB data used also
includes high-� E-mode polarization autospectra, as well as high-�
TE cross-spectra, while we have limited our analysis to only use the
base case from CMB observations.

In general, the constraints on cosmological parameters presented
in Alam et al. (2016) are highly consistent with those presented in
this analysis, but tighter by ∼40 per cent. This difference is expected
not only from the extra CMB information, but also from the fact
that the results presented there benefit from the combination of
four FS plus two BAO-only measurements. We note however, that
in the cases where alternative dark energy models are explored
this difference in precision is significantly reduced, confirming that
this tomographic technique can provide strong constraints on the
expansion history of the Universe.

Special mention should be made to two of our companion pa-
pers, Wang et al. (2016) and Zhao et al. (2017), whose analy-
ses are particularly complementary to ours. Both papers perform
anisotropic BAO-only measurements in tomographic bins, both in
3D configuration-space (Wang et al. 2016) and Fourier-space (Zhao
et al. 2017). Similarities are evident, to perform tomographic cluster-
ing measurements in many redshift bins to leverage the information
enclosed in the time evolution of the clustering signal. The main dif-
ferences are, first, these two analyses use the 3D position of galaxies,
which does not suffer from projection effects as the technique in
our analysis, increasing the significance of the BAO detection at
expenses of assuming a fiducial cosmology for their measurements,
which is one of the strengths of our analysis. Secondly, Wang et al.
(2016) and Zhao et al. (2017) perform anisotropic BAO-only fits,
while in this analysis we model the FS of ω(θ ), which encodes
information of the growth of structures. In overall, this is reflected
in that our analysis provides tighter constraints on 	m and can
constrain growth-related parameters such as the growth index γ in
Section 5.5, while the other two analyses provide tighter constraints
in parameters related to the expansion history of the Universe, such
as w0 and wa (see e.g. table 7 in Wang et al. 2016).

6 C O N C L U S I O N S

We applied a tomographic technique to analyse galaxy clustering
based on Salazar-Albornoz et al. (2014) to the final BOSS galaxy
sample. For this purpose, we extended our description of the full
shape of ω(θ ) to use state-of-the-art modelling of non-linearities,
galaxy bias and RSD. We also extended the analysis to include
cross-correlation measurements between redshift shells.
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In order to maximize the constraining power of our measure-
ments, we optimized the number of redshift shells used in the anal-
ysis, by means of maximizing the FoM in the 	m–w plane. We did
this exploring three different cases: (i) a Fisher-matrix approach
that resulted in an monotonic increase in the FoM as a function of
the number of shells; (ii) an MCMC analysis using synthetic data,
where we only varied 	m and w, which showed a clear maximum in
the FoM and (iii) an analogous MCMC test, where we also included
the nuisance parameters of the model, which resulted in the same
behaviour as (ii), but with a smaller value for the FoM. We defined
our binning scheme on the basis of the last case, where our final
configuration consisted of 18 redshift shells of different widths,
containing ∼70 000 galaxies each, plus as many cross-correlations,
with subsequent shells, as necessary to surpass the BAO scale in the
line of sight.

We tested our methodology against a set of 1000 MD-PATCHY

mock catalogues, which are designed to match the characteristics
of the final BOSS galaxy sample, following its angular and ra-
dial selection function, as well as including the redshift evolution
of bias and RSD. Using the mean of the 1000 mock catalogues,
we ran an MCMC analysis constraining very general cosmologies,
using three different models for the evolution of the linear galaxy
bias. We were able to recover unbiased cosmological information
for two of these models, and biased results at the 1σ level for the
CGC model. Also, we repeated this test on a subset of 100 mocks
using one of the galaxy-bias models that resulted in unbiased con-
straints, and performed an MCMC analysis on each mock catalogue
individually. On these tests, we found excellent agreement between
the statistical errors and those estimated by our model for the full
covariance matrix of ω(θ ).

Next, we analysed the redshift evolution of the linear bias of
BOSS galaxies. Fixing the cosmological parameters to the best-
fitting �CDM model to the final Planck CMB observations, we
fit the linear bias parameter of our model for the galaxy-clustering
signal, marginalizing over the other nuisance parameters and σ 8

with a Planck prior. Also, using the same three different models for
the redshift evolution of the linear galaxy bias used in the previous
tests, we fit the clustering amplitude of ω(θ ) in all redshift shells
simultaneously. We saw that all three models are able to reproduce
well the observed redshift evolution of the linear bias up to redshift
z ∼ 0.6, where the BOSS sample is close to a volume-limited one.
However, none of them were able to reproduce the observed scat-
ter in the measurements within 0.6 � z � 0.75, where the BOSS
sample behaves as flux limited. For this reason, and because two
of the three bias models depend on the linear growth factor D(z),
in order to avoid biased cosmological constraints, we decided not
to include the measurements in these high-redshift shells in our to-
mographic analysis. We tested the impact that assuming these three
models for the redshift evolution of the linear galaxy bias has on the
obtained constraints on cosmological parameters. Combining our
measurements of ω(θ ) from BOSS with the CMB measurements
from Planck, we obtained constraints on the wCDM parameter-
space using each of the three galaxy-bias models, and found no
significant difference between them, showing that this analysis pro-
vides robust constraints.

Finally, combining the information obtained from the application
of our tomographic approach to the final BOSS galaxy-sample, with
the latest Planck CMB observations and Type Ia supernova (SNIa),
we constrain the parameters of the standard �CDM cosmologi-
cal model and its more important extensions, including non-flat
universes, more general dark energy models, neutrino masses and
possible deviations from the predictions of GR. In general, these
constraints are comparable to the most precise present-day cosmo-

logical constraints in the literature, showing and consolidating the
�CDM model as the standard cosmological paradigm.

In particular, in all the cases where we allow wDE to deviate
from its fiducial value of −1, either as constant or time-dependent,
our final constraints are in good agreement to those cases where
wDE is fixed to −1. For the simplest wCDM extension we ob-
tain wDE = −0.958+0.063

−0.055 for the combination of our ω(θ ) mea-
surements with Planck, and wDE = −0.991 ± 0.046 for the full
Planck + ω(θ ) + SNIa combination. For models including 	K, with
w fixed to −1 or treated as a free parameter, we find |	K| ∼ 10−3,
consistent with no curvature within the errors. Although we do
not find a clear detection for the total sum of neutrino masses,
we obtain upper limits that can be considered among the tight-
est ones available at present, where in the ν�CDM case, we ob-
tain

∑
mν/eV < 0.207 (0.400) 68 per cent (95 per cent) C.I. up-

per limits for the Planck + ω(θ ) combination, while for the full
Planck + ω(θ ) + SNIa case, we find

∑
mν/eV < 0.169 (0.330)

68 per cent (95 per cent) C.I. upper limits. Furthermore, we see no
significant deviations from the GR predictions of the linear growth
of structures, parametrized by the growth index parameter γ , nei-
ther assuming a �CDM as the background cosmological model,
nor when we also treat wDE as a free parameter.

In summary, the methodology of analysing the LSS of the
Universe presented in this work, using angular galaxy-clustering
measurements in thin redshift shells, is an excellent alternative to
the traditional 3D clustering analysis. It avoids the two main is-
sues of the traditional approach, by using cosmology-independent
measurements, and by being able to trace the redshift evolution of
the clustering signal. Furthermore, this technique is able to provide
precise constraints on cosmological parameters, proving to be a
valid and very robust method to analyse present and future large
galaxy-surveys.
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Table A1. Marginalized constraints on the cosmological parameters for the
�CDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	bh2 0.02215 ± 0.00021 0.02217 ± 0.00021
	ch2 0.1204 ± 0.0019 0.1200 ± 0.0018
100θMC 1.04078 ± 0.00045 1.04080 ± 0.00043
τ 0.070 ± 0.018 0.072 ± 0.018
ln(1010As) 3.075 ± 0.034 3.077 ± 0.035
ns 0.9631 ± 0.0053 0.9637 ± 0.0053

H0 66.98 ± 0.80 67.14 ± 0.77
	� 0.681 ± 0.011 0.683 ± 0.011
	m 0.319 ± 0.011 0.317 ± 0.011
σ 8 0.825 ± 0.014 0.825 ± 0.014
Age (Gyr) 13.826 ± 0.033 13.822 ± 0.032

Table A2. Marginalized constraints on the cosmological parameters for the
wCDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	bh2 0.02220 ± 0.00022 0.02219 ± 0.00022
	ch2 0.1198 ± 0.0021 0.1199 ± 0.0021
100θMC 1.04087 ± 0.00045 1.04085 ± 0.00046
τ 0.076 ± 0.019 0.074 ± 0.019
w −0.958+0.063

−0.055 −0.991 ± 0.046

ln(1010As) 3.087 ± 0.037 3.081 ± 0.036
ns 0.9647 ± 0.0059 0.9645 ± 0.0059

H0 66.0 ± 1.5 66.9 ± 1.1
	� 0.672 ± 0.016 0.681+0.013

−0.011

	m 0.328 ± 0.016 0.319 ± 0.012
σ 8 0.816 ± 0.020 0.823 ± 0.019
Age (Gyr) 13.844 ± 0.040 13.825 ± 0.034

Table A3. Marginalized constraints on the cosmological parameters for the
w0waCDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa
	b h2 0.02220 ± 0.00022 0.02216 ± 0.00022
	c h2 0.1199 ± 0.0022 0.1199 ± 0.0021
100θMC 1.04084 ± 0.00048 1.04084 ± 0.00044
τ 0.076 ± 0.019 0.074 ± 0.019
w0 −0.60+0.24

−0.10 −0.94 ± 0.13
wa <−0.965 −0.23+0.51

−0.42

ln(1010As) 3.087 ± 0.036 3.082 ± 0.036
ns 0.9647 ± 0.0061 0.9637 ± 0.0060

H0 64.3+1.3
−1.8 67.0 ± 1.2

	� 0.654+0.017
−0.019 0.681 ± 0.012

	m 0.346+0.019
−0.017 0.319 ± 0.012

σ 8 0.806 ± 0.021 0.825 ± 0.018
Age (Gyr) 13.790 ± 0.046 13.811+0.047

−0.055

Table A4. Marginalized constraints on the cosmological parameters for the
kCDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02230 ± 0.00026 0.02229 ± 0.00026
	c h2 0.1189 ± 0.0022 0.1192+0.0022

−0.0026

100θMC 1.04100 ± 0.00049 1.04102+0.00055
−0.00049

τ 0.076 ± 0.020 0.074+0.016
−0.021

	K −0.0043+0.0042
−0.0035 −0.0028 ± 0.0038

ln(1010As) 3.085 ± 0.039 3.080+0.032
−0.038

ns 0.9671+0.0059
−0.0073 0.9663+0.0071

−0.0061

H0 65.7+1.5
−1.3 66.3 ± 1.2

	� 0.676 ± 0.013 0.679+0.013
−0.0093

	m 0.329+0.014
−0.016 0.324+0.011

−0.014

σ 8 0.823 ± 0.015 0.822 ± 0.014
Age (Gyr) 13.99+0.14

−0.17 13.93 ± 0.14

Table A5. Marginalized constraints on the cosmological parameters for the
wkCDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02227 ± 0.00025 0.02230 ± 0.00024
	c h2 0.1193 ± 0.0022 0.1187 ± 0.0022
100θMC 1.04095 ± 0.00045 1.04097 ± 0.00049
τ 0.076 ± 0.019 0.073 ± 0.019
	K −0.0037+0.0057

−0.0051 −0.0040+0.0054
−0.0041

w −1.00+0.10
−0.075 −1.025+0.064

−0.055

ln(1010As) 3.084 ± 0.037 3.077 ± 0.036
ns 0.9657 ± 0.0064 0.9675 ± 0.0063

H0 65.7+1.3
−1.5 66.5 ± 1.3

	� 0.673 ± 0.017 0.684 ± 0.013
	m 0.330 ± 0.016 0.320 ± 0.014
σ 8 0.822 ± 0.023 0.825 ± 0.019
Age (Gyr) 13.99+0.17

−0.22 13.98+0.16
−0.21

Table A6. Marginalized constraints on the cosmological parameters for
the ν�CDM model. Values correspond to the mean and 68 per cent C.I.,
except for the sum of neutrino masses where 95 per cent C.I. upper limits
are shown (for 68 per cent C.I. see text). The first block corresponds to
varied parameters in the analysis, while the second block shows derived
parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02214 ± 0.00021 0.02219 ± 0.00021
	c h2 0.1200 ± 0.0020 0.1197 ± 0.0019
100θMC 1.04079 ± 0.00044 1.04085 ± 0.00045
τ 0.076 ± 0.019 0.077 ± 0.019
�mν (eV) <0.400 (95 per cent C.I.) <0.330 (95 per cent C.I.)
ln(1010As) 3.086 ± 0.037 3.087 ± 0.037
ns 0.9633 ± 0.0055 0.9643 ± 0.0054

H0 66.2+1.2
−1.0 66.6+1.1

−0.93

	� 0.671+0.017
−0.013 0.677+0.015

−0.012

	m 0.329+0.013
−0.017 0.323+0.012

−0.015

σ 8 0.804+0.031
−0.023 0.810+0.028

−0.019

Age (Gyr) 13.876+0.051
−0.071 13.854+0.047

−0.062
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Table A7. Marginalized constraints on the cosmological parameters for
the νwCDM model. Values correspond to the mean and 68 per cent C.I.,
except for the sum of neutrino masses where 95 per cent C.I. upper limits
are shown (for 68 per cent C.I. see text). The first block corresponds to
varied parameters in the analysis, while the second block shows derived
parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02216 ± 0.00023 0.02215 ± 0.00022
	c h2 0.1199 ± 0.0021 0.1198 ± 0.0021
100θMC 1.04081 ± 0.00048 1.04080 ± 0.00047
τ 0.078 ± 0.019 0.077 ± 0.019
�mν (eV) <0.486 (95 per cent C.I.) <0.474 (95 per cent C.I.)
w −0.998+0.097

−0.064 −1.023+0.063
−0.053

ln(1010As) 3.090 ± 0.037 3.086 ± 0.036
ns 0.9636 ± 0.0064 0.9635 ± 0.0060

H0 66.1+1.5
−1.7 66.7 ± 1.1

	� 0.670 ± 0.017 0.676+0.015
−0.013

	m 0.330 ± 0.017 0.324+0.013
−0.015

σ 8 0.801+0.028
−0.024 0.805+0.030

−0.024

Age (Gyr) 13.882+0.054
−0.067 13.871+0.051

−0.072

Table A8. Marginalized constraints on the cosmological parameters for the
γ�CDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02219 ± 0.00022 0.02221 ± 0.00021
	c h2 0.1201 ± 0.0020 0.1197 ± 0.0019
100θMC 1.04084 ± 0.00046 1.04088 ± 0.00045
τ 0.075 ± 0.019 0.077 ± 0.019
ln(1010As) 3.084 ± 0.036 3.086 ± 0.036
ns 0.9641 ± 0.0057 0.9650 ± 0.0055
γ 0.67 ± 0.15 0.68 ± 0.14

H0 67.15 ± 0.87 67.33 ± 0.82
	� 0.683+0.013

−0.011 0.685 ± 0.011

	m 0.317+0.011
−0.013 0.315 ± 0.011

σ 8 0.828 ± 0.014 0.828 ± 0.015
Age (Gyr) 13.819 ± 0.036 13.813 ± 0.034

Table A9. Marginalized constraints on the cosmological parameters for the
γ wCDM model. Values correspond to the mean and 68 per cent confidence
interval. The first block corresponds to varied parameters in the analysis,
while the second block shows derived parameters.

Parameter CMB + ω(θ ) CMB + ω(θ ) + SNIa

	b h2 0.02220 ± 0.00022 0.02220 ± 0.00022
	c h2 0.1199 ± 0.0021 0.1200 ± 0.0020
100θMC 1.04086 ± 0.00046 1.04088 ± 0.00045
τ 0.076 ± 0.019 0.076 ± 0.019
w −0.980 ± 0.092 −1.013+0.052

−0.047

ln(1010As) 3.086 ± 0.037 3.086 ± 0.036
ns 0.9644 ± 0.0060 0.9643 ± 0.0059
γ 0.64+0.21

−0.23 0.70+0.16
−0.18

H0 66.6 ± 2.5 67.6 ± 1.3
	� 0.677+0.027

−0.022 0.687 ± 0.013
	m 0.323+0.022

−0.027 0.313 ± 0.013
σ 8 0.822 ± 0.030 0.832 ± 0.020
Age (Gyr) 13.832+0.053

−0.064 13.809 ± 0.037

Table A10. Redshift limits and �z of the 18 z-shells found to be the optimal
binning scheme for this tomographic analysis of this paper, form which the
three higher redshifts were not used. In all the figures, the redshift limits are
shown only to three decimal points.

zmin zmax �z used

0.20000 0.25841 0.05841 Yes
0.25841 0.30813 0.04972 Yes
0.30813 0.34266 0.03453 Yes
0.34266 0.37622 0.03356 Yes
0.37622 0.41421 0.03799 Yes
0.41421 0.44550 0.03129 Yes
0.44550 0.46670 0.02121 Yes
0.46670 0.48305 0.01635 Yes
0.48305 0.49783 0.01478 Yes
0.49783 0.51177 0.01394 Yes
0.51177 0.52580 0.01403 Yes
0.52580 0.54021 0.01442 Yes
0.54021 0.55550 0.01529 Yes
0.55550 0.57185 0.01635 Yes
0.57185 0.59103 0.01918 Yes

0.59103 0.61356 0.02253 No
0.61356 0.64375 0.03018 No
0.64375 0.75000 0.10625 No

Figure A1. Configuration matrix illustrating the auto- and cross-correlation
functions used in the analysis of the cosmological implications of ω(θ )
measured on BOSS. Filled entries indicate the measurements used, where the
diagonal terms are the autocorrelations, and off-diagonal terms correspond
to the cross-correlations included.
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