6 research outputs found

    Antagonistic Regulation of Circadian Output and Synaptic Development by JETLAG and the DYSCHRONIC-SLOWPOKE Complex

    Get PDF
    Circadian output genes act downstream of the clock to promote rhythmic changes in behavior and physiology, yet their molecular and cellular functions are not well understood. Here we characterize an interaction between regulators of circadian entrainment, output, and synaptic development in Drosophila that influences clock-driven anticipatory increases in morning and evening activity. We previously showed the JETLAG (JET) E3 ubiquitin ligase resets the clock upon light exposure, whereas the PDZ protein DYSCHRONIC (DYSC) regulates circadian locomotor output and synaptic development. Surprisingly, we find that JET and DYSC antagonistically regulate synaptic development at the larval neuromuscular junction, and reduced JET activity rescues arrhythmicity of dysc mutants. Consistent with our prior finding that DYSC regulates SLOWPOKE (SLO) potassium channel expression, jet mutations also rescue circadian and synaptic phenotypes in slo mutants. Collectively, our data suggest that JET, DYSC, and SLO promote circadian output in part by regulating synaptic morphology

    Adenosine-to-Inosine Genetic Recoding Is Required in the Adult Stage Nervous System for Coordinated Behavior in Drosophila*

    No full text
    Adenosine deaminases acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA templates, a process known as RNA editing. In Drosophila, multiple ADAR isoforms are generated from a single locus (dAdar) via post-transcriptional modifications. Collectively, these isoforms act to edit a wide range of transcripts involved in neuronal signaling, as well as the precursors of endogenous small interfering RNAs. The phenotypic consequences of a loss of dADAR activity have been well characterized and consist of profound behavioral defects manifested at the adult stage, including extreme uncoordination, seizures, and temperature-sensitive paralysis. However, the spatio-temporal requirements of adenosine to inosine editing for correct behavior are unclear. Using transgenic RNA interference, we show that network-wide editing in the nervous system is required for normal adult locomotion. Regulated restoration of editing activity demonstrates that the neuronal requirement of dADAR activity has a significant adult stage component. Furthermore we show that in relation to behavior there are no observable genetic interactions between dAdar and several loci encoding RNA interference components, suggesting that editing of neuronal transcripts is the key mode of ADAR activity for normal behavior in Drosophila

    PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation

    Full text link
    Objective: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. Methods: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. Results: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. Interpretation: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels.ANN NEUROL 2019;86:225-24
    corecore