151 research outputs found
Evidence for particle-hole excitations in the triaxial strongly-deformed well of ^{163}Tm
Two interacting, strongly-deformed triaxial (TSD) bands have been identified
in the Z = 69 nucleus ^{163}Tm. This is the first time that interacting TSD
bands have been observed in an element other than the Z = 71 Lu nuclei, where
wobbling bands have been previously identified. The observed TSD bands in
^{163}Tm appear to be associated with particle-hole excitations, rather than
wobbling. Tilted-Axis Cranking (TAC) calculations reproduce all experimental
observables of these bands reasonably well and also provide an explanation for
the presence of wobbling bands in the Lu nuclei, and their absence in the Tm
isotopes.Comment: 13 pages, 7 figure
Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams
The mechanical impact of adding milled glass fibers and nanoparticles at different mass fractions to low-density (relative density < 0.2) polyurethane (PU) foams is investigated. Tensile, compressive, and shear stress–strain curves are measured in the plane parallel to the foam-rise direction and the in-plane components of the elastic modulus are determined in order to assess the mechanical anisotropy of the foams. Power-law relationships between the moduli and apparent density are established for pure PU foams and used as a baseline to which the properties of composite foams are compared. Cellular mechanics models based on both rectangular and Kelvin unit-cell geometries are employed to estimate changes in the cell shape based on the mechanical anisotropy of composite foams, and the model results are compared with direct observations of the cellular structure from microscopy. A single measure of foam stiffness reinforcement is defined that excludes the effects of the apparent foam density and cell shape. The analysis reveals the large impact of cell shape on the moduli of the glass-fiber and nanocomposite foams. Nanocomposite foams exhibit up to an 11.1% degree of reinforcement, and glass-fiber foams up to 18.7% using this method for quantifying foam reinforcement, whereas a simple normalization to the in-plane modulus components of the pure PU foam would indicate from ?40.5% to 25.9% reinforcement in nanocomposite foams, and ?7.5 to 20.2% in glass-fiber foams
Evolving Objects in Temporal Information Systems
This paper presents a semantic foundation of temporal conceptual models used to design temporal information systems. We consider a modelling language able to express both timestamping and evolution constraints. We conduct a deeper investigation of evolution constraints, eventually devising a model-theoretic semantics for a full-fledged model with both timestamping and evolution constraints. The proposed formalization is meant both to clarify the meaning of the various temporal constructors that appeared in the literature and to give a rigorous definition, in the context of temporal information systems, to notions like satisfiability, subsumption and logical implication. Furthermore, we show how to express temporal constraints using a subset of first-order temporal logic, i.e. DLRUS, the description logic DLR extended with the temporal operators Since and Until. We show how DLRUS is able to capture the various modelling constraints in a succinct way and to perform automated reasoning on temporal conceptual models
Efimov Trimers near the Zero-crossing of a Feshbach Resonance
Near a Feshbach resonance, the two-body scattering length can assume any
value. When it approaches zero, the next-order term given by the effective
range is known to diverge. We consider the question of whether this divergence
(and the vanishing of the scattering length) is accompanied by an anomalous
solution of the three-boson Schr\"odinger equation similar to the one found at
infinite scattering length by Efimov. Within a simple zero-range model, we find
no such solutions, and conclude that higher-order terms do not support Efimov
physics.Comment: 8 pages, no figures, final versio
Coherent states for exactly solvable potentials
A general algebraic procedure for constructing coherent states of a wide
class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is
given. The method, {\it a priori}, is potential independent and connects with
earlier developed ones, including the oscillator based approaches for coherent
states and their generalizations. This approach can be straightforwardly
extended to construct more general coherent states for the quantum mechanical
potential problems, like the nonlinear coherent states for the oscillators. The
time evolution properties of some of these coherent states, show revival and
fractional revival, as manifested in the autocorrelation functions, as well as,
in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag
Recommended from our members
Simulating maize yield in sub-tropical conditions of southern Brazil using Glam model
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical
region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data
were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large
spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales
(greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small
spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional
patterns of variability in maize production in the region, providing a basis for agricultural decision making, and
Glam‑Maize is one of the alternatives
Nucleon-nucleon correlations and the single-particle strength in atomic nuclei
We propose a phenomenological approach to examine the role of short- and
long-range nucleon-nucleon correlations in the quenching of single-particle
strength in atomic nuclei and their evolution in asymmetric nuclei and neutron
matter. These correlations are thought to be the reason for the quenching of
spectroscopic factors observed in , and transfer
reactions. We show that the recently observed increase of the high-momentum
component of the protons in neutron-rich nuclei is consistent with the reduced
proton spectroscopic factors. Our approach connects recent results on
short-range correlations from high-energy electron scattering experiments with
the quenching of spectroscopic factors and addresses for the first time
quantitatively this intriguing question in nuclear physics, in particular
regarding its isospin dependence. We also speculate about the nature of a {\sl
quasi-proton} (nuclear polaron) in neutron matter and its kinetic energy, an
important quantity for the properties of neutron stars
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
- …