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Abstract 1 

The mechanical impact of adding milled glass fibers and nanoparticles at different mass fractions 2 

to low-density (relative density < 0.2) polyurethane (PU) foams is investigated. Tensile, 3 

compressive, and shear stress-strain curves are measured in the plane parallel to the foam-rise 4 

direction and the in-plane components of the elastic modulus are determined in order to assess 5 

the mechanical anisotropy of the foams. Power-law relationships between the moduli and 6 

apparent density are established for pure PU foams and used as a baseline to which the properties 7 

of composite foams are compared. Cellular mechanics models based on both rectangular and 8 

Kelvin unit-cell geometries are employed to estimate changes in the cell shape based on the 9 

mechanical anisotropy of composite foams, and the model results are compared with direct 10 

observations of the cellular structure from microscopy. A single measure of foam stiffness 11 

reinforcement is defined that excludes the effects of the apparent foam density and cell shape. 12 

The analysis reveals the large impact of cell shape on the moduli of the glass-fiber and 13 

nanocomposite foams. Nanocomposite foams exhibit up to an 11.1% degree of reinforcement, 14 

and glass-fiber foams up to 18.7% using this method for quantifying foam reinforcement, 15 

whereas a simple normalization to the in-plane modulus components of the pure PU foam would 16 

                                                
1 Present address: School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby Building, 
Stranmillis Road, Belfast BT9 5AH, Northern Ireland. 
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indicate from -40.5% to 25.9% reinforcement in nanocomposite foams, and -7.5 to 20.2% in 17 

glass-fiber foams.  18 

1. Introduction 19 

Cellular materials are widely used in the energy and transport industries as lightweight structural 20 

materials, most notably as the core material in structurally-efficient sandwich panels. Even in 21 

nonstructural applications, like packaging or insulation, the mechanical performance and 22 

integrity of these materials can be critical. Reinforcing polymer foams with short-fiber or 23 

particulate additives is a potential route to improve the mechanical properties, and reduce the 24 

weight and cost of these materials. Polyurethane (PU) foams are excellent candidates for 25 

targeting mechanical improvement via reinforcement because the mechanical properties of PU 26 

foams are relatively poor, and yet the cost and availability compare favorably with alternative 27 

foams and natural products (e.g. polyvinylchloride foams and balsa wood). 28 

The mechanical properties of cellular materials are highly dependent upon the cellular structure 29 

of the foam, as well as the properties of the solid material making up the foam, both of which 30 

may be influenced by reinforcing additives. One of the most important features of the cellular 31 

structure in terms of mechanical properties is the void fraction, which is typically characterized 32 

by the relative density (ρf /ρs) – defined as the ratio of the density of the foam to that of the bulk 33 

material of which the foam is constituted. In foams with a low relative density (ρf /ρs <0.4), 34 

many of the mechanical properties can be related to the relative density according to a power law 35 

of the form [1]: 36 

 

 

Pf
Ps

= C ρf
ρs

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
n

           (1) 37 

where P is the mechanical property of interest, ρ is density, the parameters C and n depend on 38 

the property of interest and the particulars of the foam (including the foam microstructure and 39 
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deformation mode) [2,3,4], and the subscripts s and f indicate the properties of the fully dense 40 

solid and of the foam, respectively.  41 

The exponent, n, in Equation (1) typically ranges from 1 < n < 2 for the elastic moduli. A value 42 

of n = 2 corresponds to a bending-dominated deformation mode, which is typical of open-cell 43 

foams with no cell walls. A value of n = 1 corresponds to stretch-dominated deformation, as 44 

might occur in a lattice with members oriented in the direction of loading. Intermediate values of 45 

n are typical in closed-cell foams, which have cell walls that undergo stretching and struts that 46 

undergo bending. 47 

Another important attribute for the mechanical properties of cellular materials is the cell shape. 48 

In both synthetic and natural cellular materials it is typical for the cell shape to be elongated, 49 

leading to anisotropic material properties [1]. The cells of polymer foams tend to be elongated in 50 

the direction of foaming (also referred to as the foam rise direction), as shown in Figure 1(a). 51 

Mechanical models based on an elongated unit cell have been developed to capture this 52 

anisotropic behavior. Huber & Gibson [5] considered a rectangular unit cell (Figure 1(b)) with a 53 

cell shape anisotropy ratio, R, defined as: 54 

 
l
hR =  ,           (2) 55 

where h and l are the dimensions of the unit cell parallel and perpendicular to the direction of 56 

elongation, respectively, as shown in Figure 1(a). This rectangular-cell model predicts 57 

transversely isotropic material properties that may be calculated using Equation (1) with an 58 

additional term that is related to the shape anisotropy: 59 

 

 

Pf
Ps

= C ρf
ρs

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
n

f (R)          (3) 60 

where f(R) is one of several functions of the shape anisotropy ratio of the unit cell, which are 61 

tabulated for the moduli in different material directions in Table 1. According to this model, the 62 
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mechanical properties increase in the direction of foaming (1) and decrease in all other directions 63 

as the shape anisotropy, R, increases. Using Equation (3), the cell shape anisotropy may be 64 

calculated by taking the ratio of the foam moduli in different directions, for example: 65 
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where E1, E2, and E3 are the foam moduli in the material directions defined in Figure 1(a).  67 

The tetrakaidecahedron introduced by Kelvin [6], shown in Figure 1(c), is an alternative cell 68 

geometry that is a closer representation of the cellular structure observed in polymer foams than 69 

the rectangular cell of Huber & Gibson. In addition to the term R, the Kelvin cell requires a 70 

second term, Q, to uniquely define the geometry [7]. The impact of varying the parameter Q on 71 

the cell geometry is illustrated in Figure 1(c). The full set of equations for the transversely 72 

isotropic material properties as functions of Ps, ρf, ρs, R, and Q are published elsewhere [7,8].The 73 

equivalent expression to Equation (4) using this alternative cellular geometry is: 74 
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where QQ 22~ += , 2/31 π−=C , and 
π
π

−
−=
32
11320

2C  for a hypocycloid cross-section 76 

[7]. Whereas the properties of the solid do not appear in Equation (4), the relative density is 77 

included in Equation (5). 78 

Numerous studies have reported improvements in the mechanical properties of polymer foams 79 

reinforced with short fibers [9,10,11,12,13], particles [14,15,16,17,18], and nano-particles 80 

[19,20,21,22], but relatively few have made use of cellular models to interpret the results of 81 
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mechanical tests and to develop predictive tools. Barma et al. [15] related the foam stiffness (Ef) 82 

to the solid stiffness (Es) and cell size in particle-reinforced foams at the same density. Saint-83 

Michel et al. [16] modeled reinforced foams with higher relative densities (ρf /ρs >0.3) as a 84 

porous composite filled with closed, isolated, spherical voids. Zhang et al. [20] used a Mori-85 

Tanaka model to account for carbon nanotube reinforcement and cellular voids [23]. Goods et al. 86 

[14] used a cellular model in the form of Equation (1) to describe the foam modulus (Ef) of PU 87 

foams reinforced with metal particles, along with the Kerner equation to account for changes in 88 

the solid modulus (Es); others have taken a similar approach with various composite models to 89 

estimate Es for different materials [13,17,21,22]. The effect of additives on mechanical 90 

anisotropy has been reported in several studies on chopped aramid and glass fibers [10,11,12], 91 

but was only qualitatively attributed to a combination of cell shape (R) and preferential fiber-92 

alignment. Sorrentino et al. [18] reported mechanical anisotropy in foams reinforced with iron 93 

particles aligned in a magnetic field, which the authors attributed wholly to the reinforcement 94 

and not to cell shape. Nano-scale fillers are known to influence the foaming process by inducing 95 

bubble nucleation [19] and have been reported to affect the cell shape [24], yet despite the 96 

potential influence of nanoparticles on cellular structure, mechanical anisotropy is often 97 

overlooked in the analysis of reinforcement in nanocomposite foams. 98 

A complete picture of the effect of reinforcement on the mechanical properties of composite 99 

foams requires mechanical characterization in multiple material directions, and the consideration 100 

of these factors related to cellular structure that may be affected by reinforcing additives. In this 101 

paper, low-density polyurethane foams (ρf /ρs <0.2) are characterized in tension and compression 102 

in two principal material directions and in shear using a modified Arcan testing fixture [25]. 103 

Power-law relationships between the in-plane moduli and density are established for pure PU 104 

foams to compensate for density effects in the comparison between composite and pure PU 105 

foams. The modulus data are used in conjunction with cellular material models to make 106 
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predictions about the cellular structure of the foams that are compared with microscopic 107 

observations. Changes in the moduli of composite foams are attributed to changes in the cellular 108 

structure (relative density, and cell shape) and to changes in the solid properties (ρs, Es), and a 109 

definition for the degree of foam reinforcement is proposed that is independent of cellular 110 

structure and that takes into account the tradeoff between stiffness and density in the mechanical 111 

performance of foams. 112 

2. Materials and methods 113 

2.1 Foam Preparation 114 

Rigid, closed-cell PU foams and the precursor components for producing these foams 115 

(methylene diphenyl diisocyanate and polyol blends) were obtained from the industrial producer, 116 

Recticel2. Pure PU foams (with no particle reinforcement) were obtained from the manufacturer 117 

in a range of densities (ρf = 128.0, 153.8, 163.4 kg-m-3), and were also produced in the lab under 118 

the same conditions as composite foams (ρf = 144.5 kg-m-3). 119 

Montmorillonite–carbon nanotube hybrid nanoparticles were produced by chemical vapour 120 

deposition (CVD) onto iron modified montmorillonite [26]. The pre-exfoliated morphology of 121 

these hybrid nanoparticles has been observed to result in good dispersion within polymer 122 

matrices [27]. Nanocomposite PU foams were prepared by incorporating these hybrid 123 

nanoclay/carbon-nanotube particles into the polyol blend before the foaming process, which 124 

resulted in better dispersion than incorporation into the diisocyanate, . Prior to use, the hybrid 125 

nanoparticles were dried at 110 °C for 24 h in order to remove any water. The hybrid particles 126 

were dispersed in the polyol blend at 0.25, 0.5, and 1.0 wt% using a lab homogenizer operating 127 

at 3500 rpm for 150 min in an ice bath. The mixture of hybrids dispersed in the polyol was added 128 

to the diisocyante and stirred at 3000 rpm for 25 s. The resulting mixture was quickly poured into 129 

a mold and allowed to foam freely in one direction. The resulting foam was cured for 24 h at 130 
                                                
2 Recticel N.V. - IDC Corporate, Damstraat 2, B-9230 Wetteren, Belgium. 
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room temperature and atmospheric pressure. The average density of these nanocomposite foams 131 

ranged from 105.3–112.1 kg-m-3. The tendency for nanocomposite foams to have lower densities 132 

as compared with the lab-produced pure foams has been reported previously [4] and may be 133 

explained by the high surface area of the nano-filler and the effects this can have on bubble 134 

nucleation and growth during foaming [19].  135 

Milled glass fibers with an average size of 230 microns were obtained from R&G 136 

Faserverbundwerkstoffe GmbH3. Glass-fiber composite foams were produced with 1.0, 3.0, 5.0, 137 

7.0, 9.0, 11.0, 13.0, 15.0, 17.0, and 19.0 wt% glass fibers. Because the volume of polyol was 138 

insufficient to accommodate these high loadings of reinforcement, the glass fibers were 139 

dispersed into the diisocyanate using a lab homogenizer operating at 1450 rpm for 5 min. The 140 

polyol was premixed at 2850 rpm for 25 s using the homogenizer. The glass-fiber–diisocyanate 141 

mixture was cooled to room temperature and added to the premixed polyol and stirred at 2850 142 

rpm rpm for 25 s. The resulting mixture was quickly poured into a mold and allowed to foam 143 

freely in one direction. The resulting foam was cured for 24 h at room temperature and 144 

atmospheric pressure. The average density of the resulting glass-fiber foams ranged from 131.7–145 

207.5 kg-m-3. The tendency for glass-fiber foams to have higher densities as compared with the 146 

lab-produced pure foams can be attributed to the higher initial density of the glass-fiber–147 

diisocyanate mixture (especially at the higher filler fractions), which could be expected to hinder 148 

foam cell growth. 149 

2.2 Mechanical Testing 150 

Mechanical tests were conducted using a modified Arcan fixture (MAF) [25], which allows the 151 

application of tensile, compressive, shear, biaxial tensile-shear, or biaxial compressive-shear 152 

loads through the spiral configuration of loading holes shown in Figure 2(a). The non-standard 153 

                                                
3 R&G Faserverbundwerkstoffe GmbH, Postfach 1145, D-71107 Waldenbuch, Germany. 
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compact specimen geometries shown in Figure 2(b) were adopted from Taher et al. [25], and 154 

were produced using a CNC router. Shear specimens were manufactured with the foam rise 155 

direction in the plane of the applied shear (1-2 plane). Tension and compression specimens were 156 

either oriented with the axis of loading oriented parallel (1-direction, designated ‘rise’) or 157 

perpendicular (2- and 3-directions, designated ‘transverse’) to the foam rise direction. 158 

Testing was performed at a displacement rate of 0.6 mm/min. on a screw-driven load frame with 159 

a 2 kN load transducer to record force data. The state of strain on the front and back surfaces of 160 

the specimen was measured by digital image correlation (DIC) [28,29], which was performed 161 

using an Aramis metrology system (GOM mbH). Digital images had a typical resolution of 162 

10 µm/pixel and were acquired at regular intervals throughout testing. Image correlation was 163 

performed using a window/facet size of 60 x 60 pixels and a step size of 30 pixels. These 164 

parameters were selected because, at >1.5 times the average cell size of the foams being tested, 165 

the window size was sufficiently large to yield a relatively homogeneous strain field (strain 166 

variation on the size scale of individual foam cells was not of interest in this study). Repeated 167 

analyses with window sizes ranging from 10-80 pixels square yielded no significant differences 168 

in the resulting stress-strain curves. Representative full-field strain measurements are shown in 169 

Figure 3 for each specimen type while loaded in the elastic range. 170 

Stress-strain curves were constructed by averaging the strain data within the gauge area or along 171 

the gauge line on both the front and back surfaces of each specimen type (indicated in Figure 172 

2(b)), and computing the nominal stress from the load data associated with each image. The 173 

strain data were corrected both for non-uniformity within the gauge zone and for surface effects 174 

using models of each specimen type in the commercial finite element (FE) code Abaqus 6.10-2. 175 

The results of this FE analysis for the shear specimen indicate a small variation in the shear 176 

strain along the gauge line (approx. 5%, as shown in Figure 4(a)), and a larger variation on the 177 
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gauge plane through the specimen thickness (approx. 20%, as shown in Figure 4(b)). Similar 178 

analyses were conducted for tensile and compressive specimens, and correction factors were 179 

computed from the FE results to scale the average surface strain in the gauge (the quantity 180 

measured by DIC) to the average through-thickness gauge strain, as described by Taher, et al. 181 

[25]. This methodology has been shown to compensate for errors associated with non-uniform 182 

strain distributions arising from the specimen geometry [30]. Specimen dimensions that are not 183 

sufficiently large compared to the cell size are another potential source of experimental error in 184 

evaluating the elastic moduli of foams, but the specimens in this work are sufficiently large to 185 

avoid this effect according to Tekog~lu et al. [31] and given the cell sizes presented in Table 2. 186 

3. Results and Discussion 187 

3.1 Mechanical Characterization of Pure PU Foams 188 

Representative tensile, compressive, and shear stress-strain curves for pure PU foam are shown 189 

in Figure 5 (ρf = 128.0 kg-m-3). The tensile and compressive moduli in the rise direction of the 190 

foam are higher than those in the transverse direction, indicating orthotropic material properties 191 

due to an elongated cell shape in the rise direction. The moduli are plotted as a function of 192 

density for all pure PU foams in Figure 6, and power law curves in the form of Equation (3) are 193 

fitted to the experimental data. 194 

3.2 Mechanical Characterization of Composite PU Foams 195 

The results of tensile and shear testing of glass-fiber and nanocomposite foams are plotted as a 196 

function of density in Figure 7 along with the trend lines for pure PU foams. Nanocomposite 197 

foams were also tested in compression and exhibited moduli similar to those in tension. The 198 

elastic moduli of the composite foams vary considerably from that of the lab-produced pure PU 199 

foam (ρf  = 144.5 kg-m-3), but the power law trend for pure PU foams in Figure 7 indicates that 200 

much of this variation can be attributed to changes in the density of the composite foams.  201 
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The modulus data for composite foams is normalized to the trends with density for pure PU 202 

foams and plotted as a function of filler content in Figure 8. The normalized moduli would all 203 

equal one if the changes in stiffness of the composite foams were solely attributable to changes 204 

in density. Figure 8(a) and (b) highlights the tendency for E1 to increase and for E2 to decrease in 205 

nanocomposite foams compared with the pure PU foam trend. Glass-fiber composite foams 206 

exhibit a less-pronounced increase in E1 and decrease in E2 up to a fiber content of 11 wt%, 207 

beyond which the normalized moduli tend to all increase by approximately the same amount.  208 

3.3 Mechanical and Cell Shape Anisotropy 209 

Considered separately, the moduli of composite foams suggest varying degrees of mechanical 210 

reinforcement: the rise-direction tensile modulus implies a 4–26% increase, while the transverse 211 

tensile modulus implies as much as a 40% decrease. The changes in the degree of mechanical 212 

anisotropy (E1/E2) corresponding to these divergent trends in the tensile moduli indicate that 213 

changes in the cell shape may account for some or all of these mechanical deviations from the 214 

pure PU trend.  215 

The cellular microstructure of the lab-produced pure PU (ρf = 144.5 kg-m-3) and composite 216 

foams was investigated using scanning electron microscopy. The average cell sizes were 217 

measured both in the foam rise and transverse directions according to ASTM standard 3576 [32], 218 

and are presented in Table 2. The values of shape anisotropy ratio plotted in Figure 9 were 219 

calculated as the ratio of these average dimensions. The cell shape anisotropy was also calculated 220 

using the ratio of the Young’s moduli (E1/E2) and Equations (4) or (5) from the rectangular and 221 

Kelvin unit-cell material models, respectively. The Kelvin-cell model (Equation (5)) has the 222 

additional geometry parameter, Q, which was used to fit the predicted value of R to the observed 223 

value for the pure PU foam. Estimating the solid PU density (ρs) to be 1200 kg-m3 [1,33], a value 224 

of Q = 0.5755 was empirically determined to result in the same value of R that was measured for 225 

the pure PU foam. These values of Q and ρs that were determined for the pure PU foam were 226 
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also used to calculate R for composite foams and resulted in reasonable agreement between the 227 

predicted and observed values, as shown in Figure 9, in which both the measured and the 228 

predicted values of shape anisotropy are plotted as a function of filler type and filler content. The 229 

values of shape anisotropy measured for pure PU (Rmeasured), and predicted for pure PU using the 230 

two cellular models (Rrectangular and RKelvin) are designated with horizontal lines for comparison 231 

with composite foams. The predicted shape anisotropy ratios resulting from the two different 232 

cellular models in Figure 9 exhibit similar trends with filler content, but the Kelvin-cell model 233 

values are shifted up by an approximately constant amount of 0.4 from the rectangular-cell 234 

model values and are in better agreement with the measured values, which can be attributed to 235 

the additional parameter Q in the Kelvin model. The cell shape for glass-fiber composites is only 236 

slightly changed from that of the pure PU foam (within 8%), but R increases significantly for 237 

nanocomposite foams (up to 33%). This larger effect of nano-fillers on the cell shape is 238 

consistent with the greater influence of nano-particles on bubble nucleation reported in the 239 

literature [19].  240 

3.4 Degree of Mechanical Reinforcement 241 

The degree of stiffness reinforcement in composite foams was evaluated as the relative 242 

difference between the elastic moduli of composite foams, and the predicted moduli of a 243 

hypothetical pure PU foam with the same density and cell shape as the composite foam of 244 

interest. This measure of foam reinforcement was calculated by rearranging Equation (3) into the 245 

following form: 246 

 

E f =
CE s

(ρs)
n

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (ρf )

n f (R).         (6) 247 

The ratio of Equation (6) written for a composite foam (with terms subscripted ‘comp’) and for a 248 

pure polymer foam (terms subscripted ‘pure’) yields the expression 249 
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E f( )comp
E f( )pure

=
Es /(ρs)

n( )comp
Es /(ρs)

n( )pure
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(ρf )comp
(ρf )pure

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

n
f (Rcomp)
f (Rpure)

,      (7) 250 

which may be rearranged into: 251 

 

E f( )comp =
E f( )pure
(ρf )pure( )n

(ρf )comp( )n f (Rcomp)f (Rpure)

Es /(ρs)
n( )comp

Es /(ρs)
n( )pure

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.     (8) 252 

The constant terms and exponents in the equations for the power-law curves in Figure 6(a) were 253 

substituted for the term 

 

E f( )pure
(ρf )pure( )n

 and the exponent n, respectively, and the term 254 

 

E s /(ρs)
n( )comp

Es /(ρs)
n( )pure

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
was defined as Γ, the degree of foam reinforcement, to yield: 255 

 

(E1)comp = 4.495×10−2 (ρf )comp( )1.556 f (Rcomp)
f (Rpure)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Γ ,      (9) 256 

 

(E2)comp = 1.831×10−2 (ρf )comp( )1.634 f (Rcomp)
f (Rpure)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Γ,     (10) 257 

and 258 

 

(G12)comp = 3.509×10−3 (ρf )comp( )1.810 f (Rcomp)
f (Rpure)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Γ.     (11) 259 

The reinforcement term, Γ, is the ratio of solid stiffness of the composite and pure materials, 260 

each normalized by the corresponding solid density raised to the power n, and accounts for the 261 

relative difference between the properties of a composite foam and those of a pure foam with the 262 

same density and cell shape. This definition of foam reinforcement requires that the stiffness of 263 

the composite material ((Es)comp) increase relative to its density by at least as much as does the 264 

pure foam (i.e. according to a power law with exponent n) in order to achieve positive 265 

reinforcement (Γ>1). This is an appropriate measure of reinforcement for cellular materials 266 

because an increase in solid stiffness (Es) that is equal to the n-power law trend with solid 267 

density (ρs) could be realized by simply reducing the void content of the pure material, and so is 268 

not considered reinforcement of the foam. Γ is assumed to be independent of the material 269 
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direction in Equations (9-10) because the good agreement between the measured and the 270 

predicted shape anisotropy (using the Kelvin model) of composite foams implies that the 271 

mechanical anisotropy can be wholly attributed to cell-shape effects. If cellular models had been 272 

unable to accurately predict R for composite foams, then multiple direction-dependent Γ terms 273 

could be used in Equations (9-11) to account for factors leading to anisotropy of the solid 274 

composite ((Es)comp), e.g. preferential fiber orientation. 275 

The functions f(R) in Equations (9–11) were taken from Table 1 for the rectangular-cell model 276 

and from the literature for the Kelvin-cell model4 [7,8], and the calculated values of shape 277 

anisotropy from the corresponding cellular model (presented in Figure 9) were used. The 278 

reinforcement term, Γ, was determined by minimizing the squared-error between the measured 279 

moduli and the moduli predicted using Equations (9–11) for each composite foam, and is plotted 280 

for glass-fiber and nanocomposite foams in Figure 10. The normalized moduli calculated using 281 

the best-fit values of Γ are shown along with the measured values in Figure 8. The predicted 282 

values are in good agreement with the measured moduli for glass-fiber composite foams 283 

regardless of the cellular model employed (predicted values are mostly within one standard 284 

deviation of the measured value). However, the rectangular cellular model cannot simultaneously 285 

predict the in-plane moduli accurately for nanocomposite foams. This failure of the rectangular-286 

cell model is shown in Figure 8(a) and (c), in which the predicted values of E1 are about one 287 

standard deviation above and of G12 are up to 4 standard deviations below the measured values 288 

for nanocomposite foams. The Kelvin-cell model predictions, which are also shown in Figure 8, 289 

are in good agreement with measured values (all within one standard deviation). This is 290 

consistent with the poor predictions of R resulting from the rectangular-cell model in Figure 9. 291 

                                                
4 The terms related to cellular structure (R, Q) cannot be isolated from the other terms in the expressions for the 
foam moduli in the Kelvin-cell model. Consequently, the ratio f(Rcomp)/f(Rpure) had to be computed numerically as 
Ef(Rcomp,Q,(ρf)comp,ρs) ⁄ Ef(Rpure,Q,(ρf)comp,ρs) for each composite foam. In all cases, a value Q = 0.5755 and ρs = 1.2 
kg-m-3 was used. 
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The adequacy of the rectangular-cell model for characterizing the glass-fiber foam properties, 292 

despite the large difference between the measured and predicted values of R using this model 293 

(Figure 9), is likely due to the relatively small change in cell shape (and consequently the small 294 

mechanical impact of cell shape) in these foams.  295 

The degree of foam reinforcement for glass-fibers shown in Figure 10 is similar regardless of the 296 

cellular model used. The values of Γ from the two cellular models are most divergent in foams 297 

with the largest changes in R compared to the pure foam (1.0, 3.0, 5.0, 9.0, and 19.0 wt% milled 298 

glass fibers), in which cases the values produced using the Kelvin-cell model are recommended 299 

by the more accurate predicted values of R from this model. There is a relatively small degree of 300 

foam reinforcement (2.8–10.7% increase) in foams with 1.0–11.0 wt% glass-fibers, which is the 301 

same range of filler content over which E1 increased while E2 decreased compared with the pure 302 

PU foam trend in Figure 8 (a) and (b). The changes in the normalized moduli over this range of 303 

filler content are largely attributable to the mechanical effects of cell shape, R, rather than 304 

stiffening of the solid material. Above a glass-fiber content of 11.0wt%, E1 and E2 tended to rise 305 

together relative to the pure PU trend, leading to more pronounced increases in the degree of 306 

foam reinforcement (up to 18.7%).  307 

Nanocomposite foams offer a more extreme example of divergence in the normalized moduli (E1 308 

and E2) than any of the glass-fiber foams, which may be attributed to the large increases in R for 309 

these foams (Figure 9). With Γ changing by just 2.4 and -2.4%, the modulus changes in 0.25 and 310 

1.0wt% nanocomposite foams can be almost wholly attributed to changes in cellular structure. 311 

The higher relative values of E2 and G12 for the 0.5wt% nanocomposite foam resulted in the 312 

larger increase in the degree of reinforcement of 11.1%. 313 

4. Conclusions 314 

Composite PU foams with glass-fibers and hybrid nano-particles were fully characterized in the 315 

plane parallel to foaming. The moduli of composite foams were normalized to the trends with 316 
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density established for pure PU foams. The normalized moduli of composite foams in the foam 317 

rise direction increased by 4–26%, but increased less or even decreased by as much as 40% in 318 

the transverse direction. These divergent trends were explained by the increased cell shape 319 

anisotropy, which was predicted using cellular mechanics models and confirmed 320 

microscopically. The mechanical model based on the Kelvin tetrakaidecahedron unit-cell was 321 

favored based on its accurate predictions of cell shape for the specific foams in this study, but a 322 

simpler rectangular unit-cell model predicted similar trends and may prove sufficiently accurate 323 

for different foams. After accounting for the effects of density and cell shape, any remaining 324 

mechanical difference in composite foams was attributed to changes in the properties of the solid 325 

(Es, ρs) through a quantity termed foam reinforcement (Γ), which was shown to depend on both 326 

the stiffness and the density of the solid composite. An isotropic Γ was sufficient to accurately 327 

predict the measured in-plane moduli of the foams in this study, but directionally-dependent 328 

values of Γ could be considered in cases when the composite solid stiffness ((Es)comp) is 329 

dependent on the material direction, as may be the case for aligned fiber-reinforced foams. 330 

The comparison of reinforced polymer foams with the corresponding pure foam at the same 331 

foam density by establishing power-law trends for the pure foams allows a fair comparison 332 

between materials with the same density. It should be noted that normalization of the foam 333 

modulus to foam density, Ef/ρf, does not necessarily provide for the same comparison between 334 

foams of unequal densities. The determination of cell shape contributions to mechanical 335 

anisotropy is important for understanding the causes of property enhancement in a given material 336 

direction (and the potential trade-offs in other directions), and is relevant for applications with 337 

anticipated loads in multiple material directions. This is the case for sandwich panel core 338 

materials, which typically experience multi-axial loading conditions in service. In conjunction 339 

with composite models to predict the composite solid stiffness ((Es)comp) and density ((ρs)comp), 340 
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the definition of foam reinforcement, Γ, provides a tool for predicting the efficacy of reinforcing 341 

additives for foams in view of the potential tradeoff between stiffness and added weight.  342 
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Table 1. The functions f(R) from Equation (3) for the elastic moduli in each material direction, 
based on a rectangular unit cell. 
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Table 2. Average cell dimensions measured in pure and nanocomposite PU foams. 
Foam h [µm] l [µm] 

Pure PU (lab) 389 250 
0.25 wt% Nanocomposite 317 182 
0.5 wt% Nanocomposite 357 214 
1.0 wt% Nanocomposite 340 197 

1.0 wt% Glass-fiber 387 249 
3.0 wt% Glass-fiber 372 231 
5.0 wt% Glass-fiber 458 268 
7.0 wt% Glass-fiber 370 227 
9.0 wt% Glass-fiber 346 230 

11.0 wt% Glass-fiber 360 204 
13.0 wt% Glass-fiber 297 205 
15.0 wt% Glass-fiber 368 223 
17.0 wt% Glass-fiber 386 231 
19.0 wt% Glass-fiber 349 215 
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Figure 1. (a) Schematic of polyurethane foaming process with material coordinate system 
specified, and inset showing a typical elongated cell geometry with dimensions. Cell shape 
geometries for (b) rectangular, and (c) Kelvin cellular mechanical models (Reproduced and 
adapted from [8] with permission from Elsevier). 

 

 

 
Figure 2. (a) Schematic of modified Arcan fixture, with tensile, compressive, and shear loading 
configurations specified (Reproduced and adapted from [25] with permission from Elsevier). (b) 
Specimen geometries for tension, compression, and shear loading configurations (all specimen 
thicknesses 15 mm). Gauge area/line indicated by dashed red lines. 
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Figure 3. Representative strain fields measured using DIC on a (a) tensile specimen (normal 
strain in y-direction shown), (b) compression specimen (normal strain in y-direction shown), and 
(c) shear specimen (engineering shear strain in x-y plane shown). Loading was applied in the y-
direction. 

 

 

 
Figure 4. Simulated shear strain distribution in a half-model of a shear specimen (symmetric 
about the mid-thickness) loaded in the elastic range (a) on the front/back surface, and (b) through 
the thickness on the plane of the gauge line (cut-away view). 
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Figure 5. Typical stress-strain curves for pure PU foam (ρf = 128.0 kg-m-3) loaded in tension and 
compression in the rise and transverse directions, and shear in the plane of foaming. 

 

 

Figure 6. In-plane elastic moduli of pure PU foams at different densities in tension, compression, 
and shear with power law curves plotted as dashed lines. Each data point represents the average 
obtained from 5 specimens (except compression, for which 2 specimens were tested) and error 
bars bound one standard deviation. 
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Figure 7. In-plane elastic moduli of glass-fiber (■) and nanocomposite foams (■) in tension, 
compression, and shear as a function of density. Each data point represents the average obtained 
from 4 specimens and error bars bound one standard deviation. 
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Figure 8. Tensile moduli in the (a) rise and (b) transverse directions, and (c) shear moduli of 
nanocomposite (■) and glass-fiber foams (■) normalized to the pure PU trend as a function of 
filler content, with predicted values from Equations (9–11) using the best-fitting Γ from both 
rectangular and Kelvin unit-cell models. 
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Figure 9. Microscopically measured and predicted (using both rectangular or Kelvin cell models) 
cell shape anisotropy of pure PU (0 wt% filler) and composite foams as a function of filler 
content. 
 

 
Figure 10. Degree of reinforcement calculated for composite foams using rectangular and Kelvin 
cellular material models. 
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