29 research outputs found

    Pediatricians' weight assessment and obesity management practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinician adherence to obesity screening guidelines from United States health agencies remains suboptimal. This study explored how personal and career demographics influence pediatricians' weight assessment and management practices.</p> <p>Methods</p> <p>A web-based survey was distributed to U.S. pediatricians. Respondents were asked to identify the weight status of photographed children and about their weight assessment and management practices. Associations between career and personal demographic variables and pediatricians' weight perceptions, weight assessment and management practices were evaluated using univariate and multivariate modeling.</p> <p>Results</p> <p>3,633 pediatric medical providers correctly identified the weight status of children at a median rate of 58%. The majority of pediatric clinicians were white, female, and of normal weight status with more than 10 years clinical experience. Experienced pediatric medical providers were less likely than younger colleagues to correctly identify the weight status of pictured children and were also less likely to know and use BMI criteria for assessing weight status. General pediatricians were more likely than subspecialty practitioners to provide diverse interventions for weight management. Non-white and Hispanic general practitioners were more likely than counterparts to consider cultural approaches to weight management.</p> <p>Conclusion</p> <p>Pediatricians' perceptions of children's weight and their weight assessment and management practices are influenced by career and personal characteristics. Objective criteria and clinical guidelines should be uniformly applied by pediatricians to screen for and manage pediatric obesity.</p

    Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway

    A zebrafish expression screen identifies a novel myeloid specific gene

    No full text
    In vertebrates, conserved genetic pathways tightly regulate the production and function of myeloid cells, such as granulocytes, macrophages, monocytes, and dendritic cells. Myeloid cells perform key functions in the immune response including clearance of pathogens and antigen presentation. Although myeloid cell regulation and function in vertebrates is best understood in mammals, the zebrafish presents a new model to better understand myeloid cell biology due to embryonic transparency, which allows direct observation of cell populations using transgenic reporter lines and gene expression patterns using whole-mount in situ hybridization (WISH). Because the genetic regulation of the hematopoietic hierarchy and blood cell function in zebrafish is well conserved with mammals, the insights obtained studying zebrafish myeloid cell function can be applied to our overall understanding of vertebrate myeloid cell biology. In this study, we took advantage of the optical transparency and rapid development of zebrafish embryos to identify new genes involved in myeloid cell function. We generated a cDNA library from adult kidney myelomonocytes isolated by flow cytometry to identify novel genes. We performed WISH to identify genes expressed in known sites of embryonic myelopoiesis and identified a novel gene, clone 2B4. Using quantitative PCR, we found high levels of expression of clone 2B4 in other purified myeloid cell populations. Bioinformatics analysis revealed that clone 2B4 belongs to the PLAC8 family. Here, we present the initial characterization of the novel myeloid gene, clone 2B

    The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling

    No full text
    In humans, loss-of-function mutations in the gene encoding Wnt1 inducible signaling pathway protein 3 (WISP3) cause the autosomal-recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD). However, in mice there is no apparent phenotype caused by Wisp3 deficiency or overexpression. Consequently, the in vivo activities of Wisp3 have remained elusive. We cloned the zebrafish ortholog of Wisp3 and investigated its biologic activity in vivo using gain-of-function and loss-of-function approaches. Overexpression of zebrafish Wisp3 protein inhibited bone morphogenetic protein (BMP) and Wnt signaling in developing zebrafish. Conditioned medium–containing zebrafish and human Wisp3 also inhibited BMP and Wnt signaling in mammalian cells by binding to BMP ligand and to the Wnt coreceptors low-density lipoprotein receptor–related protein 6 (LRP6) and Frizzled, respectively. Wisp3 proteins containing disease-causing amino acid substitutions found in patients with PPD had reduced activity in these assays. Morpholino-mediated inhibition of zebrafish Wisp3 protein expression in developing zebrafish affected pharyngeal cartilage size and shape. These data provide a biologic assay for Wisp3, reveal a role for Wisp3 during zebrafish cartilage development, and suggest that dysregulation of BMP and/or Wnt signaling contributes to cartilage failure in humans with PPD

    Receptor Tyrosine Kinase-like Orphan Receptor 2 (Ror2) Expression Creates a Poised State of Wnt Signaling in Renal Cancer

    Get PDF
    Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC

    Polymicrobial Candida biofilms: friends and foe in the oral cavity

    Get PDF
    The role of polymicrobial biofilm infections in medicine is becoming more apparent. Increasing number of microbiome studies and deep sequencing has enabled us to develop a greater understanding of how positive and negative microbial interactions influence disease outcomes. An environment where this is particularly pertinent is within the oral cavity, a rich and diverse ecosystem inhabited by both bacteria and yeasts, which collectively occupy and coexist within various niches as biofilm communities. Studies within this environment have however tended to be subject to extensive independent investigation, in the context of either polymicrobial bacterial communities or yeast biofilms, but rarely both together. It is clear however that they are not mutually exclusive. Therefore, this review aims to explore the influence of candidal populations on the composition of these complex aggregates and biofilm communities, to investigate their mechanistic interactions to understand how these impact clinical outcomes, and determine whether we can translate how this knowledge can be used to improve patient management
    corecore