1,183 research outputs found

    Observations from a systematic review of pharmacist- led research in solid organ transplantation: An opinion paper of the American College of Clinical Pharmacy Immunology/Transplantation Practice and Research Network

    Full text link
    IntroductionThe contributions of transplant pharmacists to clinical and translational research in the United States are ill- defined and have not been systematically reviewed.ObjectivesThe American College of Clinical Pharmacy Immunology/Transplantation Practice and Research Network conducted a systematic review of available pharmacist- led research publications involving solid organ transplantation with the intent to quantify and describe pharmacist- led research endeavors and their changes over time.MethodsAn electronic search of Scopus was conducted to identify publications in the field of solid organ transplantation by pharmacist authors between January 1, 1975 and May 25, 2017. Articles were excluded if they were written in non- English languages or originated from non- US countries. Review articles, case reports, surveys, basic science research, pre- clinical studies, and non- transplant research were further excluded. Studies were categorized as one of four phases on the clinical and translational research spectrum, adapted from the Harvard Clinical and Translational Science Center description of a T1 to T4 classification system.ResultsA total of 10- 354 publications were identified by the systematic search with 547 full- text English- language publications included in the analysis. Pharmacists served as the first author in 87% of the articles and as the senior author in 67% of the articles. A total of 71% of the articles included more than one pharmacist author. Transplant pharmacists published more studies that employed a retrospective or observational study design (55% and 78%, respectively). A total of 37% of studies were funded. On the spectrum of clinical and translation research, pharmacists were most involved in T3 (translation to practice) research (72%), followed by T2 (translation to patients) research (23%).ConclusionsTransplant pharmacists are increasingly represented in the US literature and frequently published across domains. Further demonstrating the relevance of pharmacist- delivered interventions and outcomes is a critical area of practice focus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163590/2/jac51294.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163590/1/jac51294_am.pd

    IL-13 Augments Compressive Stress–Induced Tissue Factor Expression in Human Airway Epithelial Cells

    Get PDF
    Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress–induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma

    Birthweight and risk markers for type 2 diabetes and cardiovascular disease in childhood: the Child Heart and Health Study in England (CHASE).

    Get PDF
    AIMS/HYPOTHESIS: Lower birthweight (a marker of fetal undernutrition) is associated with higher risks of type 2 diabetes and cardiovascular disease (CVD) and could explain ethnic differences in these diseases. We examined associations between birthweight and risk markers for diabetes and CVD in UK-resident white European, South Asian and black African-Caribbean children. METHODS: In a cross-sectional study of risk markers for diabetes and CVD in 9- to 10-year-old children of different ethnic origins, birthweight was obtained from health records and/or parental recall. Associations between birthweight and risk markers were estimated using multilevel linear regression to account for clustering in children from the same school. RESULTS: Key data were available for 3,744 (66%) singleton study participants. In analyses adjusted for age, sex and ethnicity, birthweight was inversely associated with serum urate and positively associated with systolic BP. After additional height adjustment, lower birthweight (per 100 g) was associated with higher serum urate (0.52%; 95% CI 0.38, 0.66), fasting serum insulin (0.41%; 95% CI 0.08, 0.74), HbA1c (0.04%; 95% CI 0.00, 0.08), plasma glucose (0.06%; 95% CI 0.02, 0.10) and serum triacylglycerol (0.30%; 95% CI 0.09, 0.51) but not with BP or blood cholesterol. Birthweight was lower among children of South Asian (231 g lower; 95% CI 183, 280) and black African-Caribbean origin (81 g lower; 95% CI 30, 132). However, adjustment for birthweight had no effect on ethnic differences in risk markers. CONCLUSIONS/INTERPRETATION: Birthweight was inversely associated with urate and with insulin and glycaemia after adjustment for current height. Lower birthweight does not appear to explain emerging ethnic difference in risk markers for diabetes

    The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2

    Get PDF
    Understanding the circumstances that lead to pandemics is important for their prevention. Here, we analyze the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted A and B. Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October–8 December), while the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans prior to November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events

    Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients.

    Get PDF
    Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Boron Nitride Nanotube: Synthesis and Applications

    Get PDF
    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed
    corecore