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ABSTRACT   

Scientists have predicted that carbon’s immediate neighbors on the periodic chart, boron and nitrogen, may also form 
perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers 
at UC Berkeley in the mid 1990’s, the boron nitride nanotube (BNNT) has proven very difficult to make until now. 
Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a 
high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered 
jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, 
and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron 
radiation shielding, piezoelectricity, thermal oxidative stability (> 800˚C in air), mechanical strength, and toughness. The 
characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.  
 
Keywords: boron nitride, nanotubes, purification, dispersion, structural composites, modeling, optical diagnostics, 
radiation shielding, piezoelectricity    

1. INTRODUCTION 

Boron nitride nanotubes (BNNTs)1-2 are a type of one-dimensional (1D) nanostructure, which have recently 
attracted significant interest from the scientific community. Structurally, BNNTs are close analogues of carbon 
nanotubes (CNTs), but composed of hexagonal B-N bonding networks. CNTs possess purely covalent C-C bonds; by 
comparison, the B-N bond has partial ionic character due to the differences in electronegativity of boron and nitrogen.3 
As a result, BNNTs are electrically insulating with a band gap of ~5 – 6 eV,4-6 while CNTs can be metallic or 
semiconducting. Research has also demonstrated that BNNTs possess several analogous and compositionally specific 
properties not seen with their carbon counterparts.7 Specifically, BNNTs exhibit high chemical stability,8 thermal 
stability (up to 800ºC in air),9 excellent thermal conductivity,10 a very high Young’s modulus (up to 1.3 TPa),11-12 
piezoelectricity,13 the ability to suppress thermal neutron radiation,3 and, as matted fabric, display 
superhydrophobicity.14-15 These intriguing properties render BNNTs as ideal candidates for a variety of applications such 
as protective shields/capsules,7 mechanical and/or thermal reinforcements for polymer, ceramic, and metallic 
composites, self-cleaning materials,16 and biology/medicine.17 They can also be utilized for numerous aerospace 
applications (spacesuits, habitats, spacecraft, etc.) which require robust materials that can withstand extreme conditions.   

BNNTs were first predicted4 and later synthesized in 19951 and have continued to gain attention in recent years, 
evidenced by the increasing number of publications in the field.2, 18 This focus has led to significant advances in the 
production of BNNTs. Many synthetic methods have already been established including, but not limited to, ball-milling 
annealing methods,19-20 catalyst-based chemical vapor deposition (CVD),21 arc-discharge,1, 22 laser vaporization,23-24 
plasma-enhanced pulsed laser deposition (PLD),25 and our group’s catalyst-free pressurized vapor/condenser method.26 
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Although some challenges still exist for the synthesis of BNNTs, their increased abundance can allow for fundamental 
understanding of growth mechanisms, structure-property relationships, and their rational integration into polymer 
composites and other matrices for real-world applications.  

In this article, we review and highlight our group’s recent progress on BNNTs at NASA Langley Research Center 
(LaRC), in collaboration with the National Institute of Aerospace (NIA). Comprehensive reviews of other BNNT work 
can be found elsewhere in the literature.2-3, 18, 27 We will examine a number of key research areas including synthesis and 
production (Section 2), raw material characterization (Section 3), purification methods to improve the quality of raw 
material (Section 4), efforts to adequately disperse BNNTs (Section 5), and utilizing dispersed material for the 
production of composites and mats, both aligned and randomly oriented (Section 6). Additionally, we present our 
modeling results on 1) the piezoelectric properties of BNNTs and 2) laser vaporization and plume chemistry of our 
production chamber in combination with optical diagnostic techniques, which are employed to validate our modeling 
results and improve our materials production (Section 7). Subsequently, we explore the properties and applications of 
BNNTs, among other research that BNNTs enable (Section 8). Lastly, a summary and outlook on the potential impact of 
BNNT research is provided in Section 9.  

2. SYNTHESIS AND PRODUCTION 

Techniques to grow BNNTs can be divided into two broad categories, low temperature and high temperature. In the 
low temperature synthesis method, the operating temperatures are between 600 and 1700°C, well below the vaporization 
temperature of pure boron (over 4000°C, depending on ambient pressure). The two common low temperature synthesis 
methods are ball-milling and chemical vapor deposition (CVD). Both of these techniques require catalysts but are 
capable of producing hundreds of milligrams to grams of BNNTs. Typically, BNNTs produced by CVD and ball-milling 
are multi-walled and possess large diameters (~ 50 nm). In addition, these tubes frequently suffer from faceted/wavy 
walls, elbows, and herringbone/bamboo-like morphologies. The second category is the high temperature synthesis 
method, which involves vaporizing elemental boron or a boron nitride target. The vaporized boron then reacts with 
nitrogen and condenses into BNNT. There are two high temperature synthesis techniques, arc-discharge and laser 
heating (or ablation) methods. These methods both produce high quality BNNTs (few defects and small numbers of 
walls) that are very thin (> 5 nm). Similar to the low temperature methods, the arc-discharge requires the use of catalysts 
and generates small diameter nanotubes with low aspect ratios. The high temperature-pressure (HTP) method of 
synthesis, known as the pressurized-vapor/condenser method,26, 28 is currently being pursued by NASA and the NIA and 
is capable of producing high-quality, high aspect ratio BNNTs.  

NASA’s BNNT production laboratory (Figures 1A, B) consists of a pressure vessel, boron target, and a heat source. 
The boron target is located inside a vessel pressurized to 1.38 MPa (200 psi) with research grade N2. When the boron is 
heated to its boiling point (~ 4000 K) by a commercial grade cutting laser, an ascending plume of vapor is produced 
which interacts with the pressurized nitrogen on an atomic level to produce BNNTs (Figure 1C). NASA’s BNNT 
production typically produces 20 milligrams (mg) of material an hour and runs a total of 12 to 20 hours per week, 
averaging 4 hours per run. The material generated is utilized for purification and dispersion studies, composite 
fabrication, and various other experimental studies.  

 

Figure 1. (A) NASA LaRC’s BNNT production lab, (B) synthesis chamber, and (C) representative TEM image of BNNTs 
grown at NASA LaRC. 



 
 

 

 
Currently the optimal growth conditions for producing high quality, high quantity BNNTs are not completely 

understood. The National Institute of Aerospace (NIA), in collaboration with NASA, has set up a dedicated BNNT 
laboratory to study BNNT nucleation and growth under various conditions (Figure 2). The new NIA BNNT laboratory 
has a high pressure synthesis chamber with a state-of-the-art 2.5 kW diffusion cooled CO2 slab laser, offering higher 
Gaussian beam quality (k-factor > 0.8 (perfect Gaussian = 1)) and hence, better focusing ability than the laser at the 
NASA BNNT laboratory. The custom-designed 6.89 MPa (1000 psi) reaction chamber (Figure 2A) was designed to 
allow an easy access to the inside of the chamber. This includes viewing ports on three sides to enable various 
visualization techniques along with in situ spectroscopy studies during synthesis. This chamber can be modified to 
explore various methods to increase yield and quality, such as varying the pressure, rotating the chamber, and using 
different collector geometries. 

 

 

Figure 2. (A) New NIA BNNT Science Rig in a safety hutch with a laser protection window, (B) white spider web like 
BNNT grown for 10 seconds, and (C) corresponding TEM micrograph. 
 
Additionally, optical in situ diagnostics can be performed during the synthesis and the data can be utilized in 

modeling codes to improve the energy coupling efficiency between the laser and boron target to maximize the 
production of high-quality BNNT. Emission spectroscopy, pyrometry, and high-speed photography (shadowgraphs) 
have already been implemented in the NASA BNNT synthesis system successfully, which will be adapted to the new 
NIA BNNT chamber with NASA colleagues. Future spectroscopy studies may include PLIF (Planar Laser Induced 
Fluorescence), CARS (Coherent Anti-Stokes Raman Spectroscopy), Raman, Rayleigh/Mie scattering, along with 
absorption spectroscopy which will aid in the understanding of the chemistry and flow physics involved in BNNT 
generation. The in situ diagnostic techniques will help us to understand how the growth process changes under different 
operating conditions. The optical diagnostic results can further improve computational modeling/simulation (Section 
7.2), which will aid in iteratively adjusting the operating conditions for optimized production rates and high-quality 
material.  

Using this custom-made chamber and stable diffusion cooled slab laser, NIA has been successfully synthesizing 
high-quality BNNTs since the first run in July 2013. The quality and synthesis yield of NIA BNNTs can be further 
enhanced and optimized by controlling key parameters with the custom designed chamber. Even at a chamber pressure 
of 1.00 MPa (145 psi) and laser power of 1 kW, the NIA BNNT chamber produced BNNTs equivalent in quality to 
BNNTs produced at 1.38 MPa (200 psi) and 1 kW with the NASA chamber, as determined from transmission electron 
microscopy (TEM) characterization. Figure 2B shows white spider web-like BNNT grown for 10 seconds at the very 
first test run without optimization and corresponding TEM image of the as-grown BNNTs is shown in Figure 2C. Most 
of the nanotubes are long, thin (single to few walls), and highly crystalline with relatively few impurities, which is very 
promising for the optimization study. 

3. CHARACTERIZATION 

During synthesis, the growth mechanism and the morphology of BNNTs are affected by several experimental 
parameters such as initial chamber pressure, growth temperature, laser focus, and the thermal chemistry of the boron and 
nitrogen sources. In addition, the formation of BNNTs is largely influenced by the growth mechanism in which 
nucleation/propagation can occur via root-growth or tip-growth. The lack of understanding of the growth mechanism 



 
 

 

 
arises mainly from an absence of experimental evidence. Coupled with the small size of the nanotubes and the relatively 
small quantities of material available, high-resolution TEM (HRTEM) is the most suitable analysis technique. Both 
crystallographic and morphologic data can be obtained and correlated with changes in experimental parameters to 1) 
study growth mechanism and 2) optimize the growth environment of BNNTs. Spatially resolved electron energy loss 
spectroscopy (EELS) can often be obtained in conjunction with HRTEM which can be utilized to determine band gap 
energy levels. The data can be used to corroborate or invalidate current theoretical studies4-5 on the band gap sensitivity 
to the structure of BNNTs. 

The as-grown BNNT material typically range anywhere from grey to white in appearance. These products consist of 
an inhomogeneous mixture of nanotubes and nanoparticles as shown in Figure 3A. The nanotubes are either isolated or 
organized in small bundles (2 – 10 tubes), with lengths ranging from several hundreds of nanometers up to several 
microns among the bundled and entangled networks. In the inset of Figure 3A, the HRTEM image reveals a straight-
walled tubular structure with clearly distinguishable layers in the multi-walled nanotubes. An additional TEM image 
(Figure 3B) demonstrates that the size, shape, and structure of nanoparticle impurities (boron or BN) are very 
heterogeneous. They can be attached at the nanotubes, isolated, or encapsulated in BN shells in the case of boron. The h-
BN nanoparticles have been observed to range from 50 nm to 200 nm in size, while the BN-encapsulated boron 
nanoparticles are found in the 10 – 20 nm range (Figure 3B, red arrow) or > 100 nm (Figure 3B, yellow arrow). 
Analyzing the boron nanoparticles was of significant interest as they are intimately involved in the growth mechanism of 
the nanotubes. The encaged particles are nearly spherical in shape whereas the h-BN shells wrapping them form 
polygons, as attested by the examples shown in the HRTEM images (Figure 3C and D) for the different sized boron 
particles. Combining microscopy with in situ diagnostics and modeling studies will allow us to synthesize BNNTs with 
minimum impurities or predominately generate one type of impurity by controlling the experimental parameters for 
specific demands. 

 

Figure 3. Representative TEM images of (A) BNNTs with HRTEM inset of a double-walled and 10-walled BNNT, (B) 
BNNTs and impurity nanoparticle species, (C) > 200 nm h-BN encapsulated B particle, and (D) a < 10 nm h-BN 
encapsulated B nanoparticle. (E) EELS spectrum line across a BNNT. The K-edges of boron (~ 189eV) and nitrogen (~ 
400eV) can be seen in these spectra showing they form the BN frame of the nanotube and are uniformly distributed. (F) 
Band gap measurement for a 3-wall BNNT and 6-wall BNNT from low energy EELS spectra. 



 
 

 

 
 

The band gap of the as-synthesized BNNTs was confirmed by EELS. As shown in Figure 3E, sharp boron and 
nitrogen K-edge bands were detected, which are composed of both π* and σ* peaks that are typical for sp2 bonded BN 
networks with a boron to nitrogen ratio equal to unity (1:1).4 The optical band gap in individual nanotubes is measured at 
the intersection between the flat background and the line fitting the slope of the first peak of the low energy EELS 
spectra,29 as shown in Figure 3F. For all investigated nanotubes (diameter ranging from 3 to 6 nm and number of layers 
of 3 and 6), the value of the optical gap is found to be 5.74 eV, independent of diameter and wall number, which is very 
close to that of bulk h-BN. 

In addition to TEM studies, BNNTs and BNNT mats (see Section 6) prepared at NASA LaRC were also probed 
with a Brunauer-Emmett-Teller (BET) surface analysis system to gather information on dispersion quality and surface 
area. The BET model was adopted to calculate the surface area in mesoporous range (2 – 50 nm) based on the nitrogen 
gas adsorption of the samples. The analysis can provide their specific surface area (m2/g), which can be used to evaluate 
the quality of each sample with respect to dispersion, debundling, aggregation, and presence of impurities. For example, 
as-synthesized BNNTs possessed specific surface areas in the range of 200 – 300 m2/g. Preliminary results demonstrate 
that, upon purification with nitric acid (see Section 4), the purified BNNTs exhibit increased surface area as compared to 
the raw BNNTs. The increased surface area can potentially be attributed to the removal of boron nanoparticles and 
exfoliation of BNNTs during the acid treatment. The removal of impurity species and the debundling of BNNTs is 
critical for structural applications since impurities will serve as failure points during mechanical testing, degrading the 
structural properties. As such, the combination of electron microscopy and surface area analyses are effective for gaining 
qualitative and quantitative data on BNNTs.  

4. PURIFICATION METHODS 

As demonstrated in Section 3, the HTP method generates small highly-crystalline, small diameter BNNTs but often 
contains impurities that need to be removed, such as boron nanoparticles encapsulated in a BN shell, amorphous and 
crystalline BN, as well as BN nanoparticles. The presence of these impurities can potentially degrade the advantageous 
properties of the BNNTs, although additional experiments are needed to compare the properties of raw and purified 
BNNTs. For example, impurities can act as defect sites at which failure can occur under mechanical testing. Hence, 
purification may be a critical step for fundamental and applied research. Therefore, we have investigated a variety of 
purification methods to determine the optimum approach to generating compositionally and morphologically pure 
BNNTs. 

Currently, we are exploring three different approaches, namely acid treatment, thermal purification and surfactant 
separation, with the objective of selectively removing certain impurities from as-synthesized BNNTs. For example, acid 
treatment is aimed at the removal of boron nanoparticles, as boron is well known to oxidize in the presence of nitric acid 
to boric acid which is water-soluble. Heat treatment as a purification approach is being explored as BNNTs are stable in 
air up to 800°C. The goal is to oxidize the boron nanoparticles and subsequently remove the water-soluble boron oxide 
(B2O3) formed during the heating process. Alternatively, heating boron in a nitrogen atmosphere generates BN, which 
can also be oxidized in air, forming B2O3.

30 Lastly, the surfactant purification approach utilizes surface-active agents, or 
surfactants, to influence the interfacial tension of the various species in the BNNT sample, enabling the removal of 
impurities. A similar approach has already been successfully utilized for CNTs.31 Studies have already begun for 
determining the optimum surfactant(s) for the removal of all impurities including boron nanoparticles and undesirable 
BN species. This approach to purifying the nanotubes is the least destructive and therefore the preferred method. 

Acid treatment of boron nitride nanotubes via nitric acid reflux has been extensively explored. The nitric acid is 
proposed to penetrate the BN shell that encapsulates the boron nanoparticle (Figure 4A), resulting in a water-soluble 
impurity. Although scanning electron microscopy (SEM) analysis demonstrates that the nitric acid successfully removes 
the boron nanoparticles, leaving behind a hollow BN shell (Figure 4B), the BNNTs were found to be significantly 
damaged during the treatment. These observations are similar to nitric acid treatment on CNTs, which has been 
previously shown to remove metal catalyst particles at the expense of the nanotubes.32 Furthermore, structural 
composites and mats fabricated from purified BNNTs possessed little to no integrity as a result of the degradation of the 
nanotubes during acid purification. 



 
 

 

 

 

Figure 4. SEM images of (A) raw BNNTs showing the presence of large boron nanoparticles and (B) BNNTs after acid 
treatment demonstrating the removal of B and the presence of hollow h-BN shells. The insets are the TEM images of boron 
nanoparticles (A) and hollow h-BN shells (B). 
  
As the acid treatment of BNNTs is investigated further, other approaches are needed to remove non-tubular BN 

impurities from as-grown BNNTs. Along with thermal and surfactant purification, kinetic purification will be 
investigated as a purification method for BNNT. The kinetic purification approach exploits the measured densities of the 
BNNTs and the impurities in a process to remove the undesirable contents of the sample. This method will include using 
sonication and centrifugation in various ways to achieve the purification of BNNT. These various purification 
approaches will be utilized to develop an optimal method of purification to generate high-quality, pure BNNTs which 
will enable fundamental studies, structural nanocomposites, and various other applications. 

5. DISPERSION 

Similar to CNTs, one of the critical issues in BNNT research is dispersion of individual nanotubes in solution, 
enabling further processing and handling.33 Poor dispersion, aggregation, and bundling are often detrimental to intrinsic 
properties, yielding significantly lower values than theoretically predicted. For example, poor dispersion can prevent 
efficient load transfer from the matrix to nanotube reinforcements of a composite material, which impairs the mechanical 
properties of the structure. Effective dispersion and understanding the relationship between matrix chemistry, processing 
methods, and the resulting physical properties are necessary steps towards tailoring the performance of nanocomposites 
materials. Hence, the ability to manipulate BNNTs in uniform, homogenous solutions enables researchers to harness 
their unique, advantageous properties facilitating fundamental research.  

Fabricating nanocomposites, by combining nanomaterials within a hosting material, is a potential method to produce 
macroscopic material systems that benefit from nanosized constituents. However, orderly distribution of nanosized 
constituents has proven to be an intrinsic obstacle, and is complicated by bundling caused by attractive intermolecular 
forces between the nanomaterials themselves. Although extensive literature is available on the exfoliation and dispersion 
of CNTs,34 many of these methods alter or damage the sp2 nature of the nanotube surface altering their native properties. 
For example, high-power sonication has been shown to drastically shorten tube length35, while chemical 
functionalization methods directly modify the surface structure. Exploration on BNNT dispersion and exfoliation have 
been limited to sonication in conjunction with 1) individual solvents or 2) functionalization by polymers, surfactants, and 
other biomolecules.36-43 The objective was to develop a means of uniformly dispersing BNNTs without the need for 
functionalization or sonication in order to preserve the high aspect ratios of the nanotubes and their sp2 nature, which is 
responsible for their extraordinary properties.  

Solvents with relatively good BNNT dispersion ability can be determined by comparison of the thermodynamic 
Hansen parameters. The Hansen solubility parameters for dispersion, polar, and hydrogen bonding, represent the 
intermolecular interactions contributing to the solubility of BNNT into a solvent. The solubility parameters can be 
plotted to determine a three dimensional volume encompassing solvents that effectively disperse BNNT. Solubility 
theory has been utilized to determine solvent mixtures for dispersing single-walled CNTs44 and graphene.45 It has been 



 
 

 

 
shown that solvents tend to dissolve solutes with parameter values similar to their own, which can be exploited to predict 
and tailor optimal solvent combinations. Co-solvents were investigated as a means to enhance the solubility of as 
compared to a single solvent.46 This method of dissolving the BNNT in a co-solvent without sonication or 
functionalization preserves the intrinsic BNNT properties. The approach of matching solubility parameters between 
materials is commonly utilized in other fields (e.g. polymer, paint, and art conservation) in order to selectively dissolve 
components while decreasing the need for toxic and costly solvents that can be mimicked with a co-solvent combination. 
We have attempted to identify the region using the graphical method44 from observations of solvent and co-solvent 
interactions with BNNT, since the solubility parameters for BNNT are unknown. By ranking solvents based on their 
dispersion strength, a solubility region for BNNTs was estimated. In this way, several candidate solvent and co-solvent 
systems were identified for subsequent testing to verify the region and save resources by eliminating incompatible 
combinations. 

Based on observations of this dispersion study, highly polar, aprotic solvents disperse bulk BNNT materials most 
effectively with or without sonication. Such solvents tend to be high boiling and define a broad solubility region for 
BNNT in terms of solubility parameters. The efficacy of each solvent can be compared to each other and to co-solvents 
designed to mimic the best known solvents to disperse BNNT. One successful co-solvent system designed to disperse 
BNNT is composed of two solvents. Solvent A is a highly polar, aprotic solvent (e.g. DMF, DMSO, NMF, etc.), while 
Solvent B, which is protic, does not lie within the BNNT solubility region (e.g. water, methanol, IPA, etc.). Both 
solvents are incorporated into a co-solvent ranging in ratios from 80:20 to 50:50 for Solvent A:Solvent B. The resulting 
solubility parameters are averaged from those of the individual constituents based on the ratio of the two solvents. Thus, 
by designing and testing co-solvent systems, one can further narrow the BNNT solubility region in finer increments than 
with pristine solvents alone. This approach can also be used to determine the usefulness of choosing solvents with 
certain chemical and structural properties to aid in dispersion, since the solubility parameters incorporate these traits. For 
example, the BNNT solubility region resides at a low hydrogen bonding range, implying that BNNT is hydrophobic, and 
does not interact well with solvents containing the hydroxyl group which includes alcohols. This verifies the 
hydrophobic behavior of BNNT, since water lies far outside the determined solubility region. These results are 
promising, though additional studies are still needed to determine the best solvent(s) and/or co-solvent system for BNNT 
dispersion. 

6. STRUCTURAL COMPOSITES 

Previously, we demonstrated that BNNT yarns could be spun directly from as-grown BNNTs which may have 
potential as structural reinforcements for composite materials.26 BNNTs are also highly desirable for nanocomposites as 
a result of their excellent thermal, chemical, and electrical properties. Hence, BNNTs are capable of fulfilling multiple 
roles (e.g. structural reinforcement, neutron radiation shield, electrical insulator, textile reinforcement, and mechanical 
sensors) within polymeric, ceramic, and even metal matrices, generating light-weight materials which are appealing for a 
variety of space and aerospace applications. Although the literature on BNNT composites is limited, materials up to 10 
wt% have already been reported, which show significant improvements in elastic modulus and thermal conductivity over 
the neat matrix.27 For example, a 1 wt% BNNT-polystyrene (PS) composite displayed a 21% increase in the elastic 
modulus of PS, while a 10 wt% BNNT-poly(methyl methacrylate) (PMMA) composite displayed a 3-fold increase in the 
thermal conductivity of PMMA.27  

The initial approach to fabricating BNNT composites focused on generating mats (Figure 5A) through vacuum 
filtration of a dispersed solution of BNNTs, which would then be subsequently infiltrated with an epoxy or polymer. 
Although preliminary results showed some success for generating structural materials, the process was not easily 
replicated, which may be a result of impurity species present in the as-synthesized material. Mats produced from acid-
purified BNNTs (see Section 4) were observed to have little or no structural integrity. Similar behavior was also noted 
for mats generated from heavily sonicated BNNT solutions. 

Recently, we developed a new method for fabricating high weight percent (wt%) nanocomposites materials which is 
capable of locking in the dispersed state of the nanotubes. This is critical for realizing the true potential of the BNNTs. 
Utilizing this method, composite samples containing up to 75 wt% BNNT with various polymers such as polyvinyl 
alcohol (PVA), polyurethane (PU), PMMA, and LaRC™-CP2 were generated. Some examples of the composites are 
shown in Figure 5B for BNNT-CP2 samples at 33, 50, and 67 wt% BNNT. Additional work on BNNT-epoxy 
composites has also shown promise; a 10 wt% BNNT-epoxy composite (Figure 5C) was generated with a two-



 
 

 

 
component epoxy. The estimated void content based on theoretical density of BNNT was less than 2%. Details on the 
fabrication process for polymer and epoxy composites will be available in future publications.  

The composites can be further consolidated by pressing during the drying process or by subsequent hot-pressing. 
Preliminary mechanical tests on small scale polymer composites have demonstrated an increase in the storage modulus 
by two orders of magnitude over the pure PU matrix with the incorporation of BNNTs up to 67 wt%. An increase in both 
the glass transition temperature and melting point above those of the neat polymer by up to 35°C was observed with an 
increase the wt% of BNNTs for PAN, PU, and CP2. Although preliminary, these results indicate that contact between 
the randomly-oriented nanotubes and the polymer is maintained during the fabrication process. Subsequent scaling-up of 
the composite size will enable additional standardized mechanical testing (e.g. tensile, compression, wear) which will 
further elucidate the potential of BNNTs as structural reinforcement. 

 

Figure 5. (A) Example of a BNNT mat fabricated by vacuum filtration, (B) Image of small scale BNNT-CP2 composite 
samples containing 33 wt%, 50 wt%, and 67 wt% BNNT (from left to right), and (C) image of a BNNT-epoxy composite 
containing 10 wt% BNNT. The sample shown in (C) measures 5 mm by 16 mm in width and length, respectively.  

While the random-oriented BNNT composites demonstrate potential for structural and mechanical reinforcement, 
generating composite materials with aligned BNNTs is also critical in terms of achieving the best properties, which has 
been previously demonstrated for BNNT-PVA composites.47 Thus, we have also explored various techniques to orient 
and align BNNTs including, interfacial polymerization, fiber drawing/spinning, hot-press molding, melt extrusion, and 
self-assembly methods using surfactants, block copolymers, and liquid crystal polymers. This can be further extended to 
explore the subsequent removal of the polymer matrix to generate aligned BNNT structures for other applications. 

Another promising alignment method is the utilization of interfacial polymerization. Here, accelerated step growth 
kinetics occurs at an interface between two immiscible liquids where each solution contains different monomers. 
Candidate polymer systems include polyamides, polyesters, polycarbonates, and polyurethanes. In a recent study nylon 
6,10 was utilized to fabricate aligned BNNT nanocomposite materials via interfacial polymerization of the polyamide 
and fiber spinning process. BNNT-polyamide nanocomposite fibers, 100 – 500 µm wide and < 100 µm thick, were 
successfully obtained via a continuous spinning process. Hence, this method is advantageous for BNNT alignment due 
to rapid entrapment of BNNTs at the viscous interface followed by the continuous extraction, of the swollen polymer 
interfacial membrane, aligning the polymer molecules and the nanotubes along the fiber axis.  Morphological 
characterization using HRSEM suggests that the interfacial polymerization process with BNNT dispersion enabled 
BNNTs to be embedded in polyamide fibers oriented parallel to the spinning direction, though further analysis is needed 
to quantify these observations. 

7. MODELING AND DIAGNOSTICS 

7.1 Molecular Dynamic Modeling of Piezoelectric BNNTs 

BNNTs have been shown to exhibit electroactive behavior in response to mechanical deformation,48 which is highly 
advantageous for sensor, actuator, and energy applications.49 Although the intrinsic piezoelectricity of BNNTs is well 
established, the nature of this phenomenon is not well understood. In order to probe the effects of atomic scale structural 
changes on the observed electronic behavior, we have developed an empirical model for replicating the piezoelectric 
properties of BNNTs. To improve upon existing computational approaches, a novel geometry-dependent polarization 
term was added to the B-N interatomic potential currently utilized for neutral BNNTs.50 This additional term emulates 
the dipole polarization of the B-N bond under strain to accurately reproduce the piezoelectric behavior of BNNTs.  



 
 

 

 

 

Figure 6. (A) A simulated single-walled (9,0) zig-zag BNNT system with green and blue sphere representing B and N 
atoms, respectively. (B) Piezoelectric coefficients, e11, and e14, for (n,0) and (n,n) BNNTs, respectively, obtained from the 
molecular dynamics simulations, scaled by the nanotube circumference, C, and plotted versus the inverse square of the 
radius given as 1/n2. 

The model predictions for the piezoelectric coefficients (e11 and e14) of single-walled BNNTs (Figure 6A) under 
uniaxial tension and twist along the nanotube axis were computationally verified against previous ab-initio and tight-
binding calculations reported by Sai and Mele.49 A good qualitative and quantitative agreement between the tight-
binding and our molecular dynamics (MD) model was achieved (Figure 6B), although minor differences were noted for 
nanotubes of very small diameter (< 1 nm) as well as armchair tubes polarized in twist which can be ascribed to the 
structural buckling that occurs in the MD simulations. Interestingly, a weak spontaneous polarization was predicted for 
unloaded nanotubes, which was found to increase with decreasing diameter. While spontaneous polarization is expected 
for BNNTs, there is no consensus within the field on its existence. Hence, more experimental data is needed to address 
and substantiate these findings. The modeling results indicate that the developed model works well for BNNTs over the 
entire range of chiral angles (θ) from armchair ( = 0°) to zig-zag nanotubes ( = 30°) and functions under both tensile 
and twist loading. This simplified and efficient approach can be utilized for molecular dynamics and Monte Carlo 
simulations on larger scale systems inaccessible by quantum mechanics based computations. As such, this model can 
serve as a foundation for atomic-level modeling of the electroactive properties of large systems of BNNTs, BNNT 
composites, and other structures such as planar h-BN. 
 
7.2 Modeling of Laser Vaporization and Plume Chemistry 

Three goals for our BNNT modeling program are to: (1) define the environment in which nanotubes now grow; (2) 
define the optimum environment for growing BNNTs; and (3) explore modifications to the BNNT chamber by 
simulation to promote the optimum growth environment. In essence these goals address three fundamental questions. 
Where are we now? Where do we need to go? How do we get there? 

Defining the current growth environment has received the most attention. A hypersonic flow simulation code, 
Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), has capabilities to model environments over 
planetary entry vehicles including effects of coupled radiation and ablation. This code was modified to simulate effects 
of radiative heating (laser) on a boron surface in a high-pressure nitrogen atmosphere. Thermochemical models for a 
boron-nitrogen system and inclusion of gravitational forces (buoyancy) were added to LAURA to implement the 
simulations. A parametric study51 on a simplified geometry documented the flow rate of BN and B2 in a plume rising 
from the irradiated, molten boron ball. Parameter variation included pressure, laser power, and atmospheric dilution with 
noble gases (He, Ar). A key result shows that significant dissociation of N2 near the boron droplet surface occurs only 
when higher pressures raise the boiling point of boron. As boron vaporizes and diffuses through the dissociated nitrogen 
BN molecules are formed. Depending on the kinetic models employed, a supersaturated concentration of BN in the 



 
 

 

 
rising, cooling plume is available to feed nucleation of BNNTs. As pressures continue to rise for a fixed laser power 
input, the dissociation of nitrogen is suppressed and mass flow rates of BN slowly diminish. 

Defining the optimum environment requires understanding the nucleation mechanisms for growing BNNTs. Here a 
fundamental question regarding the conditions that promote growth of long nanotubes as opposed to more amorphous 
aggregations of boron and BN solids. Two mechanisms are postulated. The first, a tip growth mechanism, would involve 
rapid nucleation of a nanotube from a supersaturated BN plume that continues until the tip closes or the BN reservoir in 
the plume is depleted. The second, a root growth mechanism23, 52 would involve growth of the crystal from a “micro-
droplet” of boron. This mechanism is suggested from TEM observations in which nanotubes are often connected to a 
hardened droplet of boron. These micro-droplets may be formed from condensation as gaseous boron rises and cools, or 
they may be ejected from the surface of the large, irradiated boron droplet hanging from the fiber bundle. This ejection 
mechanism is proposed from the observation of the ejection of material formed when the hanging boron droplet is 
jostled by the mechanical advancement of the receding fiber bundle back into the path of the laser. In this mechanism, 
BN molecules are formed or adsorbed on the micro-droplet surface. As the micro-droplet rises and cools within the 
plume the crystal is drawn out from the reservoir of BN building blocks along the surface. Micro-droplet radius and 
cooling rates would be key parameters affecting nanotube length in this scenario. Options for molecular dynamics scale 
modeling of these potential mechanisms are currently being evaluated. 

Optimizing production rates based on knowledge of the actual nucleation physics will be aided by simulation of the 
plume environment. For example, consider the temperature environment in the rising plume from the irradiated droplet 
presented in Figure 7. The temperature scale starts at 2600 K, the approximate melting point of boron at 1.38 MPa (200 
psig), in order to highlight distinct temperature zones in the plume. Assuming both axisymmetric flow and buoyancy 
effects, for simplification, the plume rises vertically in the closed chamber. Atomic nitrogen is formed in the red zone 
near the droplet surface. Rising micro-droplets, if any, will tend to cool and solidify as they rise above the green and 
cyan zones in the plume and give up latent heat from their interior. Considering the effects associated with a cooling jet 
of nitrogen directed from below the droplet, this could promote recirculation of micro-droplets through the hot, red zone 
rich in nitrogen and BN for adsorption. A cooling jet in association with higher laser power could extend the length and 
time of residence in the green zone, while stabilizing the hanging droplet under conditions of larger energy input. Other 
scenarios could be envisioned, and simulation will guide how they may be implemented to obtain optimum 
environments as identified by both experiment and molecular dynamics simulations.  

 
Figure 7. Temperature and streamlines surrounding irradiated droplet of boron at 1.39 MPa (200 psig) in nitrogen. 

7. 3 In situ Diagnostics 



 
 

 

 
Qualitative and quantitative data are needed to develop a detailed understanding of the chemistry and the flow 

physics of nanotube fabrication, and to study how this process changes under different operating conditions. 
Nonintrusive optical measurement techniques can be used to improve and validate simulation and modeling of the 
fabrication process, as well as the nanotube growth process. A variety of measurements are needed such as the gas 
composition, gas temperature, and the temperature of the boron target in its molten state. For example, the temperature 
of the boron target provides an important validation point and/or boundary condition for the computations. By utilizing 
these optical measurement techniques, additional information will be available to optimize the synthesis of BNNTs, 
improve material properties, and increase production rates. 

Five different optical measurement technologies have been investigated: 1) high speed camera imagery, 2) 
shadowgraph flow visualization, 3) optical pyrometry, 4) planar laser-induced fluorescence (PLIF), and 5) coherent anti-
Stoked Raman spectroscopy (CARS). Both 1 and 2 are qualitative methods and their results are summarized below. The 
latter three techniques (3 through 5) are semi-quantitative or quantitative and currently under development; the rationale 
for using these methods is briefly discussed. 

A high speed color Phantom v9.1 camera (with 1,632 x 1,200 pixels) capable of framing at over 1 kHz rates was 
used with a high magnification setup (nearly 1:1 imaging, using a 200 mm focal length lens with several macro rings) in 
the NASA BNNT rig to provide close-up images (Figure 8) of the molten boron ball and the BNNT fibrils that were 
being produced. In Figure 8A, the top left corner shows the bundle of boron wires (dia ~ 0.32 cm) that compose the 
boron feedstock under normal operating conditions. The CO2 laser melts the boron wires and surface tension holds the 
molten ball of boron to the bundle. The brightness in this image increases with temperature (although the emissivity – 
and thus brightness – of solid phase boron is about a factor of two higher than the liquid phase).53 Consequently, the 
hottest part of the ball is at the top-right corner where the laser is incident upon the ball while the cooling along the 
feedstock is evident from the decreased intensity along the feedstock. The sudden increase in brightness indicated by the 
black arrow is likely caused by the interface between the liquid-phase boron (to the right of the interface) and a crust of 
solid phase boron (to the left).  

 
Figure 8. Still frames from the high-speed camera showing (A) the boron target and molten ball under normal operating 
conditions, (B) the target and molten ball with a misaligned configuation, (C) rising fibrils collecting and adding to others 
on the condensor wire, and (D) fibrils missing the condenser wire (denoted by the blue line segments).  
 



 
 

 

 
By contrast, Figure 8B shows the boron target with the laser misaligned wherein the round-shaped exposed liquid 

surface is far from the center of the bundle of boron rods. Such information can be used to more carefully align the boron 
target and laser to optimize production. Figure 8C shows material rising up from the molten ball at the bottom of the 
picture (not shown) and being captured on the condenser wire forming BNNT fibrils, though in some instances the fibrils 
miss the condenser wire (Figure 8D). Based on these images, it appears that the nanotubes are being formed in the gas 
phase prior to condensing on the wire.  

The use of a shadowgraph system to visualize both the molten boron ball and the gaseous flow around the ball 
during operation at the NIA BNNT lab (Figure 9) was an improvement. A continuous white-light source was used to 
illuminate a conventional54 lens-based shadowgraph system having a 100 mm diameter, 500 mm focal length lenses. A 
beam splitter was used to allow two different cameras to visualize the resulting shadowgraph images: a low-resolution 
greyscale 30 frames per second video camera (Hitachi KPM1 with 768 x 493 pixels) that could be continuously recorded 
and the same type of color Phantom v9.1 high speed camera were set to record the shadowgraphy, which could be 
recorded in short (1 – 2 s) bursts. The natural luminosity of the hot molten ball allows it to be directly imaged by the 
optics while the purple sections of the image show the shadowgraph, which is sensitive to density gradients in the flow. 
The high speed camera tracked the temporal dynamics of the plume of hot gas rising from the molten boron ball at high 
pressures above 1.38 MPa (200 psi). Generally, the plume was steady and narrow, rising above the ball and eventually 
becoming unsteady and oscillatory as shown in Figure 9A. The left side of each image shows fibrils attached to the 
feedstock holder.  In some cases, some particulates were ejected from the molten boron ball at the 60° (Figure 9B, blue 
arrow) and 210° (Figure 9B, yellow arrow) positions. The unsteady nature of the plume suggests that the computational 
simulations should include a turbulence factor as opposed to a steady-state solution at high pressures. Another extension 
of the high speed imagery is to perform pyrometry which utilizes either the intensity or spectrum of emitted light to 
determine temperature of a surface. Currently, both single-wavelength and two-wavelength pyrometry are being 
explored in conjunction with a high-speed camera to ascertain the quantitative temperature and time-resolve the 
temperature distribution of the molten boron ball. 

 

Figure 9. Shadowgraph of the NIA BNNT synthesis chamber (A) without and (B) with mass ejection from the molten boron ball. 
In (A), as-grown BNNTs (1), the plume (2), boron feedstock (3), and molten boron ball (4) are highlighted for reference. In (B), 
the mass ejection at 60° and 210° are denoted with the blue and yellow arrows, respectively. 

 

Further work is ongoing to develop and apply PLIF and CARS to the NIA BNNT chamber. PLIF involves using a 
planar laser sheet to excite fluorescence, collected by a camera, of a specific species within the flow. CARS involves 
crossing and focusing three pulsed laser beams to probe the Raman resonances of any species present at crossing point of 
the lasers. A nonlinear Raman interaction causes a fourth beam to be generated and analysis of this fourth beam allows 
determination of temperature and concentration. The species expected to be present in the chamber include B2, B, BN, 
N, and N2, which can potentially be probed with PLIF or CARS to gain further insight into the growth mechanism of 
BNNTs synthesized by the HTP method.  



 
 

 

 
8. APPLICATIONS BNNTs ENABLE 

8.1 Electroactive Materials 

Nakhmanson’s theoretical analysis predicted that the piezoelectric coefficient of BNNTs can be higher than that of 
poly(vinylidene fluoride-trifluoroethyene) P(VDF-TrFE).13 The piezoelectric properties of BNNTs or BNNT 
composites, however, have not been reported experimentally yet. 

A BNNT polyimide composite film actuator for piezoelectric characterization was fabricated by a filtering 
method.55-56 While the sample was under an AC electric field of 1Hz, in-plane strain (S13) was measured using a fiber 
optics. The strain (S13) of the sample appears as a superposed curve of linear and nonlinear strains as a function of 
frequency. The superposed curve was de-convoluted to a linear response and a nonlinear response. The linear response 
seems to be originated from the piezoelectric property of the BNNT active layer (Figure 10). From linear fitting of the 
data, the piezoelectric coefficient, d13, was estimated to be 14 pm/V. This is comparable to the values of commercially 
available piezoelectric polymers such as poly(vinylidene fluoride) (PVDF). The nonlinear response showed a quadratic 
increase with increasing applied electric field, indicating that the mechanism of this strain is mainly an electrostrictive 
response, which is several orders of magnitude higher than those of commercially available electrostrictive polyurethane 
materials. These results suggest that BNNT-based electroactive materials may be used for electromechanical energy 
conversion devices. 

 
Figure 10. Piezoelectric response of a BNNT based actuator film. 
 

 
8.2 Radiation Shielding 

The space environment contains major hazards, one of which is space radiation. The space radiation consists mainly 
of electrons and protons, solar energetic particles (SEP), and galactic cosmic radiation (GCR). The GCR is composed 
primarily of nuclei (fully ionized atoms) plus a small contribution (~2%) from electrons and positrons.  GCR particles 
with high atomic number (Z > 10) and high energy (E > 100 GeV) are also present.11 Additional radiation hazards come 
from neutrons and gamma rays produced in nuclear collisions and from X-rays arising after Coulomb interactions. 
Neutrons are produced as secondary radiation when the GCR and SEP interact with the walls and contents of the space 
structure (e.g. vehicle, lander, habitat, rover, or spacesuit), planetary atmospheres, and also with the regolith on the 
surfaces of the Moon, planets, or asteroids. 



 
 

 

 
Hydrogen, with the highest charge-to-mass ratio of any element, provides the best shielding against thermal 

neutons.12 As a shield of pure hydrogen is not practicable, hydrogen-containing materials make the most suitable 
candidates for shielding. The BNNTs are made up entirely of low Z atoms, boron (5) and nitrogen (7).  Boron and 
nitrogen are larger than hydrogen (1), but they are still small. BNNTs can theoretically be processed into structural 
components and utilized for load-bearing structures; they are also attractive candidates for hydrogen storage. Boron has 
one of the largest neutron absorption cross sections of all the elements of the periodic table, and nitrogen has a larger 
neutron absorption cross section than carbon. The neutron absorption cross section for the isotope B10 is 3835 barns, so 
enriching BNNT or BN with B10 would result in enhanced protection against thermal neutrons, especially if enriched 
with a sufficient amount of hydrogen. Since neutron radiation is known to be damaging to human organs and tissue, the 
possibilities are worth exploring for using BNNTs for radiation shielding structural materials.  

 
Figure 11. Calculated exposure to GCR with shielding by a wall of the same thickness (30 cm) made of liquid hydrogen 
(LH2), aluminum (Al), water, BN, polyethylene (PE), and 5% hydrogenated BN .57  

 
The computer code used for the computational modeling of materials was OLTARIS (On-Line Tool for the 

Assessment of Radiation in Space)58 which uses the HZETRN (high charge and energy transport) code developed at the 
NASA Langley Research Center.  The OLTARIS modeling study indicates that hydrogen containing BNNTs may offer 
excellent shielding effectiveness against GCR and SEP.  When one considers wall thicknesses and forms of materials 
that could actually be used to build spacecraft, one finds that BN materials perform better than liquid hydrogen (LH2) 
and water. BN with 5% hydrogen performs better than state-of-the-art (SOA) polyethylene as seen in Figure 11,57 where 
each material is a 30-cm thick wall. Hence, these modeling results indicate that BNNTs or BN alone cannot outperform 
the current SOA radiation shielding materials; the next steps are exploring hydrogenated BNNTs for enhancing 
protection again GCR.  
 
8.3 BCN Nanotubes 

BNNTs and CNTs are structurally similar and share extraordinary mechanical properties, but they differ in 
chemical, optical, and electrical properties. Electrically BNNTs are insulators with a reported band gap of about 6.0 eV, 
while CNTs are conductors typically with a band gap of 1 eV or less. By combining elements of boron, carbon and 
nitrogen, a new class of hybrid BCN nanotube (BCNNT) can be realized with optical and electronic properties that span 
the 1 – 6 eV range between CNT and BNNT (Figure 12A). Only limited success has been reported in the synthesis of 



 
 

 

 
genuine BCN nanotubes.59 Unlike previous work, these authors report all three components of boron, carbon and 
nitrogen, included in each wall of the nanotubes, not as separate multi-wall layers. Still, the production rates are very 
low, mg quantities, and the nanotubes are mainly carbon, with boron and nitrogen represented at a range of only 2 – 4 
atomic percent. 

 
Figure 12. (A) Kataura plot of BNNT and CNT band gaps demonstrating band gap engineering of BCN nanotubes for 
tailored applications, (B) TEM images of as-synthesized BCN nanotubes, (C) TEM image corresponding to (D), and (D) 
EELS spectra collected on BCN nanotubes shown in (C) with a B4C resource. In (D), the x-axis represents e- x103 over a 
range from 0 – 240 and the y-axis shows eV from 150 – 650 with boron B at 205 eV, carbon C at 290 eV, and nitrogen N at 
400 eV. 

 
Currently BNNTs are produced at LaRC by the HTP method without catalysts, using only boron and nitrogen as 

reactants. This HTP synthesis method was modified by adding a carbon resource to the existing boron target and the 
synthesis parameters were also adjusted to stabilize the hybrid molten target ball as a function of the carbon resource and 
composition. As such, we were able to generate and investigate nanotubes consisting of boron, carbon, and nitrogen with 
a controlled composition ratio. Visually the resultant BCNNTs were slightly darker in appearance than BNNT, giving 
the first indication that carbon had been successfully incorporated. Further investigations with TEM, EELS, and Raman 
spectroscopy (not shown) confirm that carbon was successfully integrated into the nanotube structure replacing some 
boron and nitrogen atoms (~10% carbon) (Figure 12B – D). These BxCyNz nanotubes possess the same excellent 



 
 

 

 
properties as BNNTs; however, with the introduction of carbon, band gaps have been achieved that are located between 
insulators (6.0 eV) and conductors (0 eV) as measured by a low energy EELS method within a TEM.  

Although the ultimate use of BCN nanotubes will be determined when they are available in large quantities, the 
main driving interest is in the possibility of ‘band gap engineering’. The modern electronics and photonic industry is 
driven in large part by the availability of semiconducting materials with desirable band gaps. For example, transistors 
require small band gap materials such as silicon to control the flow of current while photovoltaic cells operate by 
absorbing photons at the band gap of photoactive semiconductors to generate electricity. The efficiency, power 
consumption, and weight of these types of devices are directly related to the available materials, their crystalline defects, 
and the suitability of these materials in relation to their inherent band gap energy levels. As such, the tunable optical 
property and impedance matching capability of BCN nanotubes can offer a number of new optical and electronic 
applications not currently available with either BNNTs or CNTs alone.  

9. CONCLUSIONS 

Coupled with the growing interest in BNNTs, significant progress has been achieved on this unique and intriguing 
nanomaterial. The rapid development of new and improvement upon existing synthetic techniques has led to increased 
availability of BNNTs. As a result, considerable knowledge has been gained on their advantageous properties and 
potential applications.  

Our group has continued to investigate means of increasing production rates and improving material quality since 
the HTP method was reported in 2009. A second custom-designed synthesis chamber was built to explore the growth 
mechanism of BNNTs. This new chamber is also being utilized to systematically investigate the role of the different 
experimental parameters (e.g. temperature, pressure, laser focus, and laser power) on the final product by 
characterization with electron microscopy. The optical windows in the new chamber have facilitated the use of optical 
diagnostic techniques, specifically high-speed imaging, shadowgraphy, pyrometry, PLIF, and CARS, during the 
synthesis process. While some of the diagnostics remain under development, the end goal is utilizing the qualitative and 
quantitative knowledge gained to better understand the environment within the synthesis chamber and how the 
nanotubes are formed. Furthermore, these experiments will also serve as feedback to validate or refute the ongoing 
modeling effort, which is aimed at exploring the chamber environment and determining the optimal conditions for the 
growth of BNNTs. This will lead to fundamental understanding of the growth mechanism and promote the large-scale 
synthesis of high-quality BNNTs. The HTP method has also enabled the synthesis of BCN nanotubes through facile 
modification of the boron target to include a carbon resource. Utilizing TEM and EELS, the incorporation of carbon into 
the nanotube structure was confirmed. Additionally, EELS measurements revealed a band gap between the known values 
for BNNTs and CNTs, which is highly promising for band gap engineering applications. 

Additionally, we are currently investigating methods to purify and disperse BNNTs, which in turn facilitate the 
fabrication of structural composites in polymer and epoxy matrices and exploration of other potential applications for 
BNNTs. Post-synthesis purification methods are also being investigated which include nitric acid purification, thermal 
treatment, and separation via surfactants. While the nitric acid purification shows promise for removing B impurity 
species, the harsh treatment concomitantly results in degradation of the nanotube structure. The thermal and surfactant 
methods show some promise as more effective and milder alternatives, however, additional studies and characterization 
are needed. Dispersion studies have also been successful; some highly polar aprotic solvents were able to moderately 
disperse raw BNNT material without sonication. However, co-solvent combinations were found to be significantly more 
effective at dispersing BNNTs than stand-alone solvents. Analyzing the co-solvent systems with respect to their Hansen 
solubility parameters has allowed us to narrow the solubility region of BNNTs. 

A novel method was also developed to produce high weight % BNNT-polymer composites (up to 75 wt%) utilizing 
new information on BNNT dispersion. The composites samples are undergoing subsequent analysis to determine their 
properties (mechanical, electrical, thermal, etc.) as a function of wt%. Preliminary tests have shown significant promise; 
hardness, storage modulus, and the glass transition temperature displayed increases with increasing amount of BNNTs. 
The generation of these composites has also facilitated experiments on other potential applications such as electroactive 
materials and radiation shielding. For example, BNNT composites displayed piezoelectric and electrostrictive strain at 
low electric field which surpasses conventional electroactive materials which is attributed to the presence of BNNTs. 
Recent molecular dynamics modeling successfully reproduced the piezoelectric properties of BNNTs under both tensile 
and twist loading, supporting the experimental results. 



 
 

 

 
In summary, we have demonstrated significant progress on BNNT research, from synthesis and production to 

potential applications. As the field continues to gain interest, more fundamental research can lead to the discovery of 
new phenomena, improved material quality, and increased production yield. Hence, the future outlook on BNNTs is 
exciting; BNNTs can enable a wide-range of applications with their versatile nature and advantageous properties and we 
believe BNNTs will significantly impact current space and aerospace technologies. 
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