69 research outputs found

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    Bonding in complexes of bis(pentalene)di-titanium, Ti2(C8H6)2

    Get PDF
    Bonding in the bis(pentalene)di-titanium ‘double-sandwich’ species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by xdensity functional calculations and fragment analysis. Ti2Pn2 with C2v symmetry has two metal-metal bonds and a low-lying metal based empty orbital, all three frontier orbitals having a1 symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bis(cyclopentadienyl) metal fragments. Electrochemical studies on Ti2Pn†2 (Pn† = C8H4{SiiPr3-1,4}2) reveal a one-electron oxidation, and the formally mixed-valence Ti(II)-Ti(III) cationic complex [Ti2Pn†2][B(C6F5)4] has been structurally characterised. Theory indicates an S = Âœ ground state electronic configuration for the latter, confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide binds symmetrically to Ti2Pn2 preserving C2v symmetry, as does carbon disulfide. The dominant interaction in Ti2Pn2CO2 is σ donation into the LUMO of bent CO2 and donation from the O atoms to Ti2Pn2 is minimal, whereas in Ti2Pn2CS2 there is significant interaction with the S atoms. The bridging O atom in the mono(oxo) species Ti2Pn2O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analog Ti2Pn2S behaves similarly. Ti2Pn2 is also capable of binding one, two and three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding and an asymmetric structure is found. The dicarbonyl adduct Ti2Pn2(CO)2 has Cs symmetry with the Ti2Pn2 unit acting as two MCp2 fragments. Synthetic studies show, that in the presence of excess CO a tricarbonyl complex Ti2Pn†2(CO)3 is formed, which optimises to an asymmetric structure with two terminal CO ligands and one semi-bridging. Low temperature 13C NMR spectroscopy reveals a rapid dynamic exchange between the two bound CO sites and free CO

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    In Children with Nonalcoholic Fatty Liver Disease, Zone 1 Steatosis is Associated with Advanced Fibrosis

    Get PDF
    Background & Aims Focal zone 1 steatosis, although rare in adults with nonalcoholic fatty liver disease (NAFLD), does occur in children with NAFLD. We investigated whether focal zone 1 steatosis and focal zone 3 steatosis are distinct subphenotypes of pediatric NAFLD. We aimed to determine associations between the zonality of steatosis and demographic, clinical, and histologic features in children with NAFLD. Methods We performed a cross-sectional study of baseline data from 813 children (age <18 years; mean age, 12.8 ± 2.7 years). The subjects had biopsy-proven NAFLD and were enrolled in the Nonalcoholic Steatohepatitis Clinical Research Network. Liver histology was reviewed using the Nonalcoholic Steatohepatitis Clinical Research Network scoring system. Results Zone 1 steatosis was present in 18% of children with NAFLD (n = 146) and zone 3 steatosis was present in 32% (n = 244). Children with zone 1 steatosis were significantly younger (10 vs 14 years; P < .001) and a significantly higher proportion had any fibrosis (81% vs 51%; P < .001) or advanced fibrosis (13% vs 5%; P < .001) compared with children with zone 3 steatosis. In contrast, children with zone 3 steatosis were significantly more likely to have steatohepatitis (30% vs 6% in children with zone 1 steatosis; P < .001). Conclusions Children with zone 1 or zone 3 distribution of steatosis have an important subphenotype of pediatric NAFLD. Children with zone 1 steatosis are more likely to have advanced fibrosis and children with zone 3 steatosis are more likely to have steatohepatitis. To achieve a comprehensive understanding of pediatric NAFLD, studies of pathophysiology, natural history, and response to treatment should account for the zonality of steatosis

    Preconception Care for Improving Perinatal Outcomes: The Time to Act

    Get PDF
    • 

    corecore