5 research outputs found

    Phadiatop Infant in the Diagnosis of Atopy in Children with Allergy-Like Symptoms

    Get PDF
    Background and Objective. Allergy-like symptoms such as wheezing and eczema are common in young children and an early diagnosis is important to initiate correct management. The objective of this study was to evaluate the diagnostic performance of Phadiatop Infant, an in vitro test for determination of early sensitisation to food and inhalant allergens. Patients and Methods. The study was conducted, retrospectively, using frozen sera from 122 children (median age 2.7 years) admitted to the hospital with suspected allergic symptoms. The doctor's diagnosis atopic/nonatopic was based on routinely used procedures such as clinical evaluation, SPT, total and allergen-specific IgE antibodies. The performance of Phadiatop Infant was evaluated in a blinded manner against this diagnosis. Results. Eighty-four of the 86 children classified as atopic showed a positive Phadiatop Infant test. Thirty-six were classified as nonatopic, 32 of who had a negative test. With a prevalence of atopy of 70% in this population, this gives a sensitivity of 98%, a specificity of 89%, and a positive and negative predictive value of 95% and 94%, respectively. Conclusion. The results from the present study suggest that Phadiatop Infant could be recommended as a complement to the clinical information in the differential diagnosis on IgE-mediated disease in young children with allergy-like symptoms

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly

    Get PDF
    In vivo UV crosslinking identified numerous preribosomal RNA (pre-rRNA) binding sites for the large, highly conserved ribosome synthesis factor Rrp5. Intramolecular complementation has shown that the C-terminal domain (CTD) of Rrp5 is required for pre-rRNA cleavage at sites A0–A2 on the pathway of 18S rRNA synthesis, whereas the N-terminal domain (NTD) is required for A3 cleavage on the pathway of 5.8S/25S rRNA synthesis. The CTD was crosslinked to sequences flanking A2 and to the snoRNAs U3, U14, snR30, and snR10, which are required for cleavage at A0–A2. The NTD was crosslinked to sequences flanking A3 and to the RNA component of ribonuclease MRP, which cleaves site A3. Rrp5 could also be directly crosslinked to several large structural proteins and nucleoside triphosphatases. A key role in coordinating preribosomal assembly and processing was confirmed by chromatin spreads. Following depletion of Rrp5, cotranscriptional cleavage was lost and preribosome compaction greatly reduced
    corecore