664 research outputs found

    Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aromatic organic compounds for use in automated mechanism construction

    Get PDF
    Reaction with the hydroxyl (OH) radical is the dominant removal process for volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for the reactions of OH with VOCs are therefore essential parameters for chemical mechanisms used in chemistry transport models, and are required more generally for impact assessments involving estimation of atmospheric lifetimes or oxidation rates for VOCs. A structure–activity relationship (SAR) method is presented for the reactions of OH with aromatic organic compounds, with the reactions of aliphatic organic compounds considered in the preceding companion paper. The SAR is optimized using a preferred set of data including reactions of OH with 67 monocyclic aromatic hydrocarbons and oxygenated organic compounds. In each case, the rate coefficient is defined in terms of a summation of partial rate coefficients for H abstraction or OH addition at each relevant site in the given organic compound, so that the attack distribution is defined. The SAR can therefore guide the representation of the OH reactions in the next generation of explicit detailed chemical mechanisms. Rules governing the representation of the reactions of the product radicals under tropospheric conditions are also summarized, specifically the rapid reaction sequences initiated by their reactions with O2

    Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Get PDF
    This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made

    Anomalous density dependence of static friction in sand

    Full text link
    We measured experimentally the static friction force FsF_s on the surface of a glass rod immersed in dry sand. We observed that FsF_s is extremely sensitive to the closeness of packing of grains. A linear increase of the grain-density yields to an exponentially increasing friction force. We also report on a novel periodicity of FsF_s during gradual pulling out of the rod. Our observations demonstrate the central role of grain bridges and arches in the macroscopic properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.

    The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Get PDF
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed

    Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS)

    Get PDF
    Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH) using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH<sub>3</sub>I ionisation scheme. RHs studied were <1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01) and (0.41±0.07) were determined at <1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH<sub>2</sub>OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10<sup>−12</sup>–1×10<sup>−15</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH<sub>2</sub>OO and water may dominate the production of HC(O)OH in the atmosphere

    Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Get PDF
    This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made

    Shearing of loose granular materials: A statistical mesoscopic model

    Full text link
    A two-dimensional lattice model for the formation and evolution of shear bands in granular media is proposed. Each lattice site is assigned a random variable which reflects the local density. At every time step, the strain is localized along a single shear-band which is a spanning path on the lattice chosen through an extremum condition. The dynamics consists of randomly changing the `density' of the sites only along the shear band, and then repeating the procedure of locating the extremal path and changing it. Starting from an initially uncorrelated density field, it is found that this dynamics leads to a slow compaction along with a non-trivial patterning of the system, with high density regions forming which shelter long-lived low-density valleys. Further, as a result of these large density fluctuations, the shear band which was initially equally likely to be found anywhere on the lattice, gets progressively trapped for longer and longer periods of time. This state is however meta-stable, and the system continues to evolve slowly in a manner reminiscent of glassy dynamics. Several quantities have been studied numerically which support this picture and elucidate the unusual system-size effects at play.Comment: 11 pages, 15 figures revtex, submitted to PRE, See also: cond-mat/020921

    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol

    Get PDF
    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of secondary organic aerosol (SOA) formed during the chamber photo-oxidation of β-caryophyllene/NO<sub>x</sub> mixtures were investigated. Nucleation of β-caryophyllene SOA particles occurred almost immediately after oxidation was initiated and led to the formation of fresh SOA with a relatively simpler composition than has been reported for monoterpenes. The SOA yield values ranged from 9.5–26.7% and 30.4–44.5% using a differential mobility particle sizer (DMPS) and an aerosol mass spectrometer (AMS) mass based measurements, respectively. A total of 20 compounds were identified in the SOA by LC-MS/MS, with the most abundant compounds identified as β-caryophyllonic acid and β-caryophyllinic acid/β-nocaryophyllonic acid. The O:C and H:C elemental ratios of products identified in the condensed phase ranged from 0.20 to 1.00 and 1.00 to 2.00, with average values of 0.39 and 1.58, respectively. The increase in the O:C ratio was associated with a decrease in the saturation concentration of the identified compounds. The compounds identified in the lower initial concentration experiments were more oxidised compared to those that were found to be more abundant in the higher initial concentration experiments with average O:C ratios of 0.51 and 0.27, respectively. Photochemical ageing led to a more complex SOA composition with a larger contribution coming from lower molar mass, higher generation products, where both double bonds had been oxidised. This effect was more evident in the experiments conducted using the lower initial precursor concentration; a finding confirmed by the temporal behaviour of key organic mass fragment measured by an Aerosol Mass Spectrometer. Although the composition changed with both initial precursor concentration and ageing, this had no significant measurable effect on the hygroscopic properties of the SOA formed. The latter finding might have been influenced by the difference in pre-treatment of the semivolatile-containing particles prior to their measurements

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5

    Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits

    Get PDF
    The link between metal enrichment and the addition of a magmatic volatile phase in volcanogenic massive sulfide deposits and actively forming seafloor massive sulfide deposits remains poorly characterized. This is especially true when considering how metal, sulfur and fluid flux change with time. In this study, we combine in situ sulfur isotope (δ34S; n = 31) measurements with trace metal chemistry of pyrite (n = 143) from the Mala VMS deposit, Troodos, Cyprus. The aim of our study is to assess the links between volatile influx and metal enrichment and establish how, or indeed if, this is preserved at the scale of individual mineral grains. We classify pyrite based on texture into colloform, granular, disseminated and massive varieties. The trace metal content of different pyrite textures is highly variable and relates to fluid temperature and secondary reworking that are influenced by the location of the sample within the mound. The sulfur isotope composition of pyrite at Mala ranges from − 17.1 to 7.5‰ (n = 31), with a range of − 10.9 to 2.5‰ within a single pyrite crystal. This variation is attributed to changes in the relative proportion of sulfur sourced from (i) SO2 disproportionation, (ii) thermochemical sulfate reduction, (iii) the leaching of igneous sulfur/sulfide and (iv) bacterial sulfate reduction. Our data shows that there is no correlation between δ34S values and the concentration of volatile elements (Te, Se) and Au in pyrite at Mala indicating that remobilization of trace metals occurred within the mound
    corecore