176 research outputs found

    Natural Biocombinatorics in the Polyketide Synthase Genes of the Actinobacterium Streptomyces avermitilis

    Get PDF
    Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria

    Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise

    Get PDF
    Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil((R)) DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin((R)) Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P < 0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity

    Macrodiolide Formation by the Thioesterase of a Modular Polyketide Synthase.

    Get PDF
    Elaiophylin is an unusual C2-symmetric antibiotic macrodiolide produced on a bacterial modular polyketide synthase assembly line. To probe the mechanism and selectivity of diolide formation, we sought to reconstitute ring formation in vitro by using a non-natural substrate. Incubation of recombinant elaiophylin thioesterase/cyclase with a synthetic pentaketide analogue of the presumed monomeric polyketide precursor of elaiophylin, specifically its N-acetylcysteamine thioester, produced a novel 16-membered C2-symmetric macrodiolide. A linear dimeric thioester is an intermediate in ring formation, which indicates iterative use of the thioesterase active site in ligation and subsequent cyclization. Furthermore, the elaiophylin thioesterase acts on a mixture of pentaketide and tetraketide thioesters to give both the symmetric decaketide diolide and the novel asymmetric hybrid nonaketide diolide. Such thioesterases have potential as tools for the in vitro construction of novel diolides.We gratefully acknowledge BBSRC (project grant BB/J007250/1 to P.F.L.), the European Commission (Marie Curie Fellowship to Y.Z.), and the University of Cambridge (Herchel Smith Research Fellowship to A.C.M.) and Dr. Katherine Stott (Department of Biochemistry, University of Cambridge) for help in AUC analysis. L.C.D. acknowledges the support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Proc. 2012/04616-3 and 2012/02230-0). P.F.L. is an International Research Awardee of the Alexander von Humboldt Foundation.This is the final published version. It first appeared at http://onlinelibrary.wiley.com/doi/10.1002/ange.201500401/full

    Comparative population genetic structure of redbelly tilapia (Coptodon zillii (Gervais, 1848)) from three different aquatic habitats in Egypt

    Get PDF
    Recently, tilapia have become increasingly important in aquaculture and fisheries worldwide. They are one of the major protein sources in many African countries and are helping to combat malnutrition. Therefore, maintenance and conservation genetics of wild populations of tilapia are of great significance. In this study, we report the population genetic structure and genetic diversity of the redbelly tilapia (Coptodon zillii) in three different Egyptian aquatic environments: brackish (Lake Idku), marine (Al-Max Bay), and freshwater (Lake Nasser). The habitat differences, environmental factors, and harvesting pressures are the main characteristics of the sampling sites. Three mitochondrial DNA markers (COI: cytochrome oxidase subunit I; the D-loop; CYTB: cytochrome b) were used to assess population structure differences among the three populations. The population at Lake Nasser presented the highest genetic diversity (Hd = 0.8116, H = 6), and the marine population of Al-Max Bay the lowest (Hd = 0.2391, H = 4) of the combined sequences. In addition, the phylogenetic haplotype network showed private haplotypes in each environmental habitat. Results presented here will be useful in aquaculture to introduce the appropriate broodstock for future aquaculture strategies of C. zillii. In addition, evidence of population structure may contribute to the management of tilapia fisheries in Egyptian waters

    Cryptic Polyketide Synthase Genes in Non-Pathogenic Clostridium SPP

    Get PDF
    Modular type I polyketide synthases (PKS) produce a vast array of bacterial metabolites with highly diverse biological functions. Notably, all known polyketides were isolated from aerobic bacteria, and yet no example has been reported for strict anaerobes. In this study we explored the diversity and distribution of PKS genes in the genus Clostridium. In addition to comparative genomic analyses combined with predictions of modular type I polyketide synthase (PKS) gene clusters in sequenced genomes of Clostridium spp., a representative selection of other species inhabiting a variety of ecological niches was investigated by PCR screening for PKS genes. Our data reveal that all studied pathogenic Clostridium spp. are devoid of putative PKS genes. In stark contrast, cryptic PKS genes are widespread in genomes of non-pathogenic Clostridium species. According to phylogenetic analyses, the Clostridium PKS genes have unusual and diverse origins. However, reverse transcription quantitative PCR demonstrates that these genes are silent under standard cultivation conditions, explaining why the related metabolites have been overlooked until now. This study presents clostridia as a putative source for novel bioactive polyketides

    The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity

    Get PDF
    New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry

    ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures

    Get PDF
    The program package ‘ClustScan’ (Cluster Scanner) is designed for rapid, semi-automatic, annotation of DNA sequences encoding modular biosynthetic enzymes including polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS) and hybrid (PKS/NRPS) enzymes. The program displays the predicted chemical structures of products as well as allowing export of the structures in a standard format for analyses with other programs. Recent advances in understanding of enzyme function are incorporated to make knowledge-based predictions about the stereochemistry of products. The program structure allows easy incorporation of additional knowledge about domain specificities and function. The results of analyses are presented to the user in a graphical interface, which also allows easy editing of the predictions to incorporate user experience. The versatility of this program package has been demonstrated by annotating biochemical pathways in microbial, invertebrate animal and metagenomic datasets. The speed and convenience of the package allows the annotation of all PKS and NRPS clusters in a complete Actinobacteria genome in 2–3 man hours. The open architecture of ClustScan allows easy integration with other programs, facilitating further analyses of results, which is useful for a broad range of researchers in the chemical and biological sciences

    SBSPKS: structure based sequence analysis of polyketide synthases

    Get PDF
    Polyketide synthases (PKSs) catalyze biosynthesis of a diverse family of pharmaceutically important secondary metabolites. Bioinformatics analysis of sequence and structural features of PKS proteins plays a crucial role in discovery of new natural products by genome mining, as well as in design of novel secondary metabolites by biosynthetic engineering. The availability of the crystal structures of various PKS catalytic and docking domains, and mammalian fatty acid synthase module prompted us to develop SBSPKS software which consists of three major components. Model_3D_PKS can be used for modeling, visualization and analysis of 3D structure of individual PKS catalytic domains, dimeric structures for complete PKS modules and prediction of substrate specificity. Dock_Dom_Anal identifies the key interacting residue pairs in inter-subunit interfaces based on alignment of inter-polypeptide linker sequences to the docking domain structure. In case of modular PKS with multiple open reading frames (ORFs), it can predict the cognate order of substrate channeling based on combinatorial evaluation of all possible interface contacts. NRPS–PKS provides user friendly tools for identifying various catalytic domains in the sequence of a Type I PKS protein and comparing them with experimentally characterized PKS/NRPS clusters cataloged in the backend databases of SBSPKS. SBSPKS is available at http://www.nii.ac.in/sbspks.html

    Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin Biosynthesis

    Get PDF
    Biosynthesis of the toxic and carcinogenic aflatoxins (AFs) requires the activity of more than 27 enzymes. The roles in biosynthesis of newly described enzymes are discussed in this review. We suggest that HypC catalyzes the oxidation of norsolorinic acid anthrone; AvfA (AflI), the ring-closure step in formation of hydroxyversicolorone; HypB, the second oxidation step in conversion of O-methylsterigmatocystin to AF; and HypE and NorA (AflE), the final two steps in AFB1 formation. HypD, an integral membrane protein, affects fungal development and lowers AF production while AflJ (AflS), has a partial methyltransferase domain that may be important in its function as a transcriptional co-activator
    corecore