10 research outputs found

    New Petro‐aggression in the Middle East: Saudi Arabia in the Spotlight

    Get PDF
    That hydrocarbon abundance may lead to more violence is an established truism in the literature on the resource curse. Looking at the Middle East, however, the literature relates bellicose state behaviour entirely to oil-producing revolutionary republics. Instead, dynastic monarchies are claimed to be the more peacefully behaving actors. Current developments turn this conclusion upside down, however. Since 2015 at the latest, the foreign policy of Saudi Arabia, the leading monarchy in the Middle East, has transformed from multi-dependence to petro-aggression. By discussing this striking transformation, the paper puts forward a framework looking at the interaction of three crucial dimensions: first, the decreasing power projection towards the Middle East by the United States, the decade-long hegemon, due to gradual changes in world energy markets and war fatigue at home; second, the lasting fiscal potency of the Saudi regime; and, third, the personalization of the Saudi monarchy under King Salman as a historically contingent result of transferring power to the generation of Ibn Saud's grandsons

    Fate of 4-Nonylphenol and 17β-Estradiol in the Redwood River of Minnesota

    No full text
    The majority of previous research investigating the fate of endocrine-disrupting compounds has focused on single processes generally in controlled laboratory experiments, and limited studies have directly evaluated their fate and transport in rivers. This study evaluated the fate and transport of 4-nonylphenol, 17β-estradiol, and estrone in a 10-km reach of the Redwood River in southwestern Minnesota. The same parcel of water was sampled as it moved downstream, integrating chemical transformation and hydrologic processes. The conservative tracer bromide was used to track the parcel of water being sampled, and the change in mass of the target compounds relative to bromide was determined at two locations downstream from a wastewater treatment plant effluent outfall. In-stream attenuation coefficients (<i>k</i><sub>stream</sub>) were calculated by assuming first-order kinetics (negative values correspond to attenuation, whereas positive values indicate production). Attenuation of 17β-estradiol (<i>k</i><sub>stream</sub> = −3.2 ± 1.0 day<sup>–1</sup>) was attributed primarily due to sorption and biodegradation by the stream biofilm and bed sediments. Estrone (<i>k</i><sub>stream</sub> = 0.6 ± 0.8 day<sup>–1</sup>) and 4-nonylphenol (<i>k</i><sub>stream</sub> = 1.4 ± 1.9 day<sup>–1</sup>) were produced in the evaluated 10-km reach, likely due to biochemical transformation from parent compounds (17β-estradiol, 4-nonylphenolpolyethoxylates, and 4-nonyphenolpolyethoxycarboxylates). Despite attenuation, these compounds were transported kilometers downstream, and thus additive concentrations from multiple sources and transformation of parent compounds into degradates having estrogenic activity can explain their environmental persistence and widespread observations of biological disruption in surface waters

    In-Stream Attenuation of Neuro-Active Pharmaceuticals and Their Metabolites

    No full text
    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and <i>N</i>-desmethyl citalopram were the most rapidly attenuated compounds (<i>t</i><sub>1/2</sub> = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (<i>t</i><sub>1/2</sub> = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, <i>O</i>-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments
    corecore