42 research outputs found

    Acoustic Emission of Composite Vessel

    Get PDF

    Differences in Circulating Dendritic Cell Subtypes in Pregnant Women, Cord Blood and Healthy Adult Women

    Get PDF
    Different subtypes of dendritic cells (DC) influence the differentiation of naíve T lymphocytes into T helper type 1 (Th1) and Th2 effector cells. We evaluated the percentages of DC subtypes in peripheral blood from pregnant women (maternal blood) and their cord blood compared to the peripheral blood of healthy non pregnant women (control). Circulating DC were identified by flow cytometry as lineage (CD3, CD14, CD16, CD19, CD20, and CD56)-negative and HLA-DR-positive cells. Subtypes of DC were further characterized as myeloid DC (CD11c+/CD123±), lymphoid DC (CD11c-/CD123+++) and less differentiated DC (CD11c-/CD123±). The frequency of DC out of all nucleated cells was significantly lower in maternal blood than in control (P<0.001). The ratio of myeloid DC/lymphoid DC was significantly higher in maternal blood than in control (P<0.01). HLA-DR expressions of myeloid DC as mean fluorescence intensity (MFI) were significantly less in maternal blood and in cord blood than in control (P<0.001, respectively). The DC differentiation factors, TNF-α and GM-CSF, released from mononuclear cells after lipopolysaccharide stimulation were significantly lower in maternal blood than in control (P<0.01). The distribution of DC subtypes was different in maternal and cord blood from those of non-pregnant women. Their role during pregnancy remains to be determined

    Comparison of first-line treatment with CHOP versus ICED in patients with peripheral T-cell lymphoma eligible for upfront autologous stem cell transplantation

    Get PDF
    IntroductionUpfront autologous stem cell transplantation (ASCT) has been recommended for patients who are newly diagnosed with peripheral T-cell lymphoma (PTCL), and CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), an anthracycline-based chemotherapy has been the frontline chemotherapy for PTCL. However, it is not clear whether anthracycline-based chemotherapies such as CHOP could be standard induction therapy for PTCL.MethodsWe conducted a randomized phase II study to compare CHOP with fractionated ifosfamide, carboplatin, etoposide, and dexamethasone (ICED) for patients eligible for ASCT. The primary endpoint was progression-free survival (PFS) and secondary endpoints included objective response rate, overall survival (OS), and safety profiles.ResultsPatients were randomized into either CHOP (n = 69) or ICED (n = 66), and the characteristics of both arms were not different. PTCL-not otherwise specified (NOS, n = 60) and angioimmunoblastic T-cell lymphoma (AITL, n = 53) were dominant. The objective response rate was not different between CHOP (59.4%) and ICED (56.1%), and the 3-year PFS was not different between CHOP (36.7%) and ICED (33.1%). In AITL patients, CHOP was favored over ICED whereas ICED was associated with more cytopenia and reduced dose intensity. Patients who received upfront ASCT after achieving complete response to CHOP or ICED showed 80% of 3-year OS.DiscussionIn summary, our study showed no therapeutic difference between CHOP and ICED in terms of response and PFS. Thus, CHOP might remain the reference regimen especially for AITL based on its better outcome in AITL, and upfront ASCT could be recommended as a consolidation of complete response in patients with PTCL

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Dynamic switching of neural oscillations in the prefrontal-amygdala circuit for naturalistic freeze-or-flight

    No full text
    The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) are involved in the regulation of defensive behavior under threat, but their engagement in flexible behavior shifts remains unclear. Here, we report the oscillatory activities of mPFC-BLA circuit in reaction to a naturalistic threat, created by a predatory robot in mice. Specifically, we found dynamic frequency tuning among two different theta rhythms (~5 or ~10 Hz) was accompanied by agile changes of two different defensive behaviors (freeze-or-flight). By analyzing flight trajectories, we also found that high beta (~30 Hz) is engaged in the top-down process for goal-directed flights and accompanied by a reduction in fast gamma (60 to 120 Hz, peak near 70 Hz). The elevated beta nested the fast gamma activity by its phase more strongly. Our results suggest that the mPFC-BLA circuit has a potential role in oscillatory gear shifting allowing flexible information routing for behavior switches.11Nsciescopu

    Impaired auditory evoked potentials and oscillations in frontal and auditory cortex of a schizophrenia mouse model.

    No full text
    Objectives: In patients with schizophrenia, g-band (30–70 Hz) auditory steady-state electroencephalogram responses (ASSR) are reduced in power and phase locking. Here, we examined whether g-ASSR deficits are also present in a mouse model of schizophrenia, whose behavioural changes have shown schizophrenia-like endophenotypes. Methods: Electroencephalogram in frontal cortex and local field potential in primary auditory cortex were recorded in phospholipase C b1 (PLC-b1) null mice during auditory binaural click trains at different rates (20–50 Hz), and compared with wildtype littermates. Results: In mutant mice, the ASSR power was reduced at all tested rates. The phase locking in frontal cortex was reduced in the b band (20 Hz) but not in the g band, whereas the phase locking in auditory cortex was reduced in the g band. The cortico-cortical connectivity between frontal and auditory cortex was significantly reduced in mutant mice. Conclusions: The tested mouse model of schizophrenia showed impaired electrophysiological responses to auditory steady state stimulation, suggesting that it could be useful for preclinical studies of schizophrenia’’. (c) 2016 Taylor & Francis2
    corecore