105 research outputs found
Low temperature (down to 450° C) annealed TiAl contacts on N-type gallium nitride characterized by differential scanning calorimetry
International audienceThis work reports on Differential Scanning Calorimetry (DSC) measurements performed on Ti-Al metallic layers stacks deposited on n+-GaN. The aim is to get better understanding of the mechanisms leading to ohmic contact formation during the annealing stage. Two exothermic peaks were found, one below 500°C and the other one around 660°C. They can be respectively attributed to Al3Ti and Al2Ti compounds formation. The locations of these peaks provide clear evidence of solid-solid reac-tions. Lowest contact resistance is well correlated with the presence of Al3Ti compound, corresponding to Al(200nm)/Ti(50nm) stoichiometric ratio. Subsequently, Al(200 nm)Ti(50 nm) stacks on n+-GaN were annealed from 400°C to 650°C. Specific Contact Resistivity (SCR) values stay in the mid 10-5 Ω.cm² range for annealing temperatures between 450°C and 650°C. Such low-temperature annealed contacts on n+-GaN may open new device processing routes, simpler and cheaper, in which Ohmic and Schottky contacts are annealed together
Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production
Background: Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and the growth rate were the main selection parameters. The present study evaluates the performance of native microalgae strains in semi-continuous mode, considering the suitability of the algal-derived fatty acid composition and the saponifiable lipid productivity as selection criteria for microalgal fuel production. Evaluation of the photosynthetic performance and the robustness of the selected strain under outdoor conditions was conducted to assess its capability to grow and tolerate harsh environmental growth conditions. Results: In this study, five native microalgae strains from Tunisia (one freshwater and four marine strains) were isolated and evaluated as potential raw material to produce biofuel. Firstly, molecular identification of the strains was performed. Then, experiments in semi-continuous mode at different dilution rates were carried out. The local microalgae strains were characterized in terms of biomass and lipid productivity, in addition to protein content, and fatty acid profile, content and productivity. The marine strain Chlorella sp. showed, at 0.20 1/day dilution rate, lipid and biomass productivities of 35.10 mg/L day and 0.2 g/L day, respectively. Moreover, data from chlorophyll fluorescence measurements demonstrated the robustness of this strain as it tolerated extreme outdoor conditions including high (38 ° C) and low (10 ° C) temperature, and high irradiance (1600 µmol/m2 s). Conclusions: Selection of native microalgae allows identifying potential strains suitable for use in the production of biofuels. The selected strain Chlorella sp. demonstrated adequate performance to be scaled up to outdoor conditions. Although experiments were performed at laboratory conditions, the methodology used in this paper allows a robust evaluation of microalgae strains for potential market applications.This study was supported by the Marine Microalgae Biotechnology Group at the University of Almer'a (BIO 173) and the Campus de Excelencia Internacional Agroalimentario (ceiA3) within the joint framework of supervised theses between the University of Almeria, Spain and the University of Sfax, Tunisia.Scopu
New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities
The electromagnetic polarizabilities of the nucleon are fundamental
properties that describe its response to external electric and magnetic fields.
They can be extracted from Compton-scattering data --- and have been, with good
accuracy, in the case of the proton. In contradistinction, information for the
neutron requires the use of Compton scattering from nuclear targets. Here we
report a new measurement of elastic photon scattering from deuterium using
quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden.
These first new data in more than a decade effectively double the world
dataset. Their energy range overlaps with previous experiments and extends it
by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory
with dynamical \Delta(1232) degrees of freedom shows the data are consistent
with and within the world dataset. After demonstrating that the fit is
consistent with the Baldin sum rule, extracting values for the isoscalar
nucleon polarizabilities and combining them with a recent result for the
proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/-
1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+
1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44
degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees
addresse
Response of a Li-glass/multi-anode photomultiplier detector to collimated thermal-neutron beams
The response of a position-sensitive Li-glass scintillator detector being
developed for thermal-neutron detection with 6 mm position resolution has been
investigated using collimated beams of thermal neutrons. The detector was moved
perpendicularly through the neutron beams in 0.5 to 1.0 mm horizontal and
vertical steps. Scintillation was detected in an 8 X 8 pixel multi-anode
photomultiplier tube on an event-by-event basis. In general, several pixels
registered large signals at each neutron-beam location. The number of pixels
registering signal above a set threshold was investigated, with the
maximization of the single-hit efficiency over the largest possible area of the
detector as the primary goal. At a threshold of ~50% of the mean of the
full-deposition peak, ~80% of the events were registered in a single pixel,
resulting in an effective position resolution of ~5 mm in X and Y. Lower
thresholds generally resulted in events demonstrating higher pixel
multiplicities, but these events could also be localized with ~5 mm position
resolution.Comment: 23 pages, 8 figure
Asynchronous Testing of Synchronous Components in GALS Systems
International audienceGALS (Globally Asynchronous Locally Synchronous) systems, such as the Internet of Things or autonomous cars, integrate reactive synchronous components that interact asynchronously. The complexity induced by combining synchronous and asynchronous aspects makes GALS systems difficult to develop and debug. Ensuring their functional correctness and reliability requires rigorous design methodologies, based on formal methods and assisted by validation tools. In this paper we propose a testing methodology for GALS systems integrating: (1) synchronous and asynchronous concurrent models; (2) functional unit testing and behavioral conformance testing; and (3) various formal methods and their tool equipments. We leverage the conformance test generation for asynchronous systems to automatically derive realistic scenarios (input constraints and oracle), which are necessary ingredients for the unit testing of individual synchronous components, and are difficult and error-prone to design manually. We illustrate our approach on a simple, but relevant example inspired by autonomous cars
Time- and energy-resolved effects in the boron-10 based Multi-Grid and helium-3 based thermal neutron detectors
The boron-10 based Multi-Grid detector is being developed as an alternative
to helium-3 based neutron detectors. At the European Spallation Source, the
detector will be used for time-of-flight neutron spectroscopy at cold to
thermal neutron energies. The objective of this work is to investigate fine
time- and energy-resolved effects of the Multi-Grid detector, down to a few
eV, while comparing it to the performance of a typical helium-3 tube.
Furthermore, it is to characterize differences between the detector
technologies in terms of internal scattering, as well as the time
reconstruction of ~ s short neutron pulses. The data were taken at the
Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube
were installed at the ESS test beamline, V20. Using a Fermi-chopper, the
neutron beam of the reactor was chopped into a few tens of s wide pulses
before reaching the detector, located a few tens of cm downstream. The data of
the measurements show an agreement between the derived and calculated neutron
detection efficiency curve. The data also provide fine details on the effect of
internal scattering, and how it can be reduced. For the first time, the chopper
resolution was comparable to the timing resolution of the Multi-Grid detector.
This allowed a detailed study of time- and energy resolved effects, as well as
a comparison with a typical helium-3 tube.Comment: 37 pages, 21 figure
Modern insulation materials for warming of walls
Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar-horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) - all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well-being. Only by so-doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change. © 2013 John Wiley & Sons Ltd
Compton Scattering from \u3csup\u3e12\u3c/sup\u3eC Using Tagged Photons in the Energy Range 65–115 MeV
Elastic scattering of photons from 12C has been investigated using quasimonoenergetic tagged photons with energies in the range 65–115 MeV at laboratory angles of 60∘, 120∘, and 150∘ at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(γ,γ)12C cross section to the bound-nucleon polarizabilities
Dama Gazelle (Nanger dama) conservation strategy 2019-2028
Produced following the workshop hosted by Al Ain Zoo in Al Ain, United Arab Emirates, 11-13 December 2018. Compiled and edited by: David Mallon, Lisa Banfield, Helen Senn & Hessa Al Qahtani.Peer reviewe
- …