19 research outputs found

    A model-strengthened imaging biomarker for survival prediction in EGFR-mutated non-small-cell lung carcinoma patients treated with tyrosine kinase inhibitors

    Get PDF
    International audienceNon-small-cell lung carcinoma is a frequent type of lung cancer with a bad prognosis. Depending on the stage, genomics, several therapeutical approaches are used. Tyrosine Kinase Inhibitors (TKI) may be successful for a time in the treatment of EGFR-mutated non-small cells lung carcinoma. Our objective is here to propose a survival assessment as their efficacy in the long run is challenging to evaluate. The study includes 17 patients diagnosed as of EGFR-mutated non-small cell lung cancer and exposed to an EGFR-targeting TKI with 3 computed tomography (CT) scans of the primitive tumor (one before the TKI introduction and two after). An imaging biomarker based on the texture heterogeneity evolution between the first and the third exams is derived and computed from a mathematical model and patient data. Defining the overall survival as the time between the introduction of the TKI treatment and the patient death, we obtain a statistically significant correlation between the overall survival and our imaging marker (p = 0:009). Using the ROC curve, the patients are separated into two populations and the comparison of the survival curves is statistically significant (p = 0:025). The baseline exam seems to have a significant role in the prediction of response to TKI treatment. More precisely, our imaging biomarker defined using only the CT scan before the TKI introduction allows to determine a first classification of the population which is improved over time using the imaging marker as soon as more CT scans are available. This exploratory study leads us to think that it is possible to obtain a survival assessment using only few CT scans of the primary tumor

    The requirements of a specialist breast centre

    Get PDF
    Abstract This article is an update of the requirements of a specialist breast centre, produced by EUSOMA and endorsed by ECCO as part of Essential Requirements for Quality Cancer Care (ERQCC) programme, and ESMO. To meet aspirations for comprehensive cancer control, healthcare organisations must consider the requirements in this article, paying particular attention to multidisciplinarity and patient-centred pathways from diagnosis, to treatment, to survivorship.Peer reviewe

    Nuclear Fuel Cycle Front End Chemistry

    Get PDF
    A broad description of the main chemical processes involved at each main step of the nuclear fuel cycle, from uranium mining to nuclear grade uranium oxide preparation for nuclear fuel fabrication is provided

    Récupération de phase itérative pour des applications médicales

    No full text
    International audienceXPulse is a collaborative project aiming at the development of an innovative medical device to promote early detection of breast cancer, essential for the reduction of the mortality rate. In the proposed imaging system, a pulsed energetic laser hits a metallic tape, generating a secondary X-ray source, whose energy can be tuned by the tape material. Diagnosis is improved through 3D X-ray phase contrast (XPC) tomography, with significantly enhanced tissues sensitivity under dose control, without breast compression for the comfort of the patient.The preliminary tests are conducted at the technology center ALPhANOV in collaboration with the Bergonié institute: X-rays produced by a liquid anode microfocus source illuminate the sample and the free-space propagated XPC images are acquired in the Fresnel regime by a single-photon counting detector.The edge-enhanced images at the detector plane are due to the object-induced phase shift, directly related to the δ parameter of its complex refractive index.Recorded intensity maps are processed by applying phase retrieval (PR) algorithms. On-line approaches, such as Paganin and Bronnikov method, commonly used in medical applications to recover the phase distribution of the object, assume that the δ and β ratio are known. Iterative approaches, while heavier in terms of computational cost, are more suitable when dealing with heterogeneous samples, and allow one to achieve quantitative analysis. The δ and β distributions are directly recovered from the reconstructed wavefield without the need of a priori knowledge on the sample composition.The iterative PR algorithm we developed is based on the Fresnel diffraction. In particular, the angular spectrum representation is the method of choice for X-rays beam propagation under our experimental condition.The wavefield is propagated back and forth between the object and the detector plane, and at each position, constraints are applied to ensure algorithm convergence. Both numerical calculations and experimental XPC images (2D) are used to validate our approach.Future development include extending the algorithm to 3D cases, and implement it into our iterative tomographic process in order to retrieve the refraction index for each voxel of the reconstructed volume.This project is funded by Nouvelle-Aquitaine region and the European Regional DevelopmentFund (ERDF)XPulse est un projet de collaboration visant à développer un dispositif médical innovant pour promouvoir la détection précoce du cancer du sein, essentielle pour la réduction du taux de mortalité. Dans le système d'imagerie proposé, un laser énergétique pulsé frappe un ruban métallique, générant une source secondaire de rayons X, dont l'énergie peut être réglée par le matériau du ruban. Le diagnostic est amélioré grâce à la tomographie 3D à contraste de phase des rayons X (XPC), avec une sensibilité des tissus considérablement accrue sous contrôle de la dose, sans compression du sein pour le confort de la patiente.Les tests préliminaires sont menés au centre technologique ALPhANOV en collaboration avec l'institut Bergonié : Les rayons X produits par une source microfocale à anode liquide illuminent l'échantillon et les images XPC propagées dans l'espace libre sont acquises dans le régime de Fresnel par un détecteur à comptage de photons uniques.Les images à bords renforcés dans le plan du détecteur sont dues au déphasage induit par l'objet, directement lié au paramètre δ de son indice de réfraction complexe.Les cartes d'intensité enregistrées sont traitées en appliquant des algorithmes de récupération de phase (PR). En ligne en ligne, telles que la méthode de Paganin et Bronnikov, couramment utilisée dans les applications médicales, pour récupérer la distribution de phase de l'objet. pour récupérer la distribution de phase de l'objet, supposent que les rapports δ et β sont connus. Les approches itératives bien que plus lourdes en termes de coût de calcul, sont plus adaptées au traitement d'échantillons hétérogènes et permettent d'obtenir des résultats plus précis. d'échantillons hétérogènes et permettent d'effectuer une analyse quantitative. Les distributions δ et β sont directement récupérées à partir du champ d'onde reconstruit sans qu'il soit nécessaire de connaître a priori la composition de l'échantillon. la composition de l'échantillon.L'algorithme itératif PR que nous avons développé est basé sur la diffraction de Fresnel. En particulier, la représentation du spectre angulaire représentation du spectre angulaire est la méthode de choix pour la propagation des rayons X dans nos conditions dans nos conditions expérimentales.Le champ d'onde est propagé dans un sens et dans l'autre entre l'objet et le plan du détecteur. chaque position, des contraintes sont appliquées pour assurer la convergence de l'algorithme. Les calculs numériques et des images expérimentales XPC (2D) sont utilisées pour valider notre approche.Les développements futurs incluent l'extension de l'algorithme aux cas 3D, et son implémentation dans notre processus de tomographie itérative afin d'assurer la convergence de l'algorithme. processus tomographique itératif afin de récupérer l'indice de réfraction pour chaque voxel du volume reconstruit.Ce projet est financé par la région Nouvelle-Aquitaine et le Fonds européen de développement régional (FEDER).régional (FEDER)Traduit avec www.DeepL.com/Translator (version gratuite

    Complications Following Percutaneous Image-guided Radiofrequency Ablation of Bone Tumors A 10-year Dual-Center Experience

    No full text
    International audienceBackground Percutaneous radiofrequency ablation (RFA) is effective in the management of bone tumors. However, knowledge of the complication rate and risk factors for complications of RFA is lacking. Purpose To report the complication rate and risk factors of bone tumor RFA. Materials and Methods This retrospective study reviewed complications in consecutive patients who underwent RFA of primary or metastatic bone tumors from January 2008 to April 2018. Complications were categorized into major (grade 3 or 4, severe or life-threatening) or minor (grade 1 or 2, mild or moderate) according to Common Terminology Criteria for Adverse Events. Univariable and multivariable regression analyses were performed to identify variables associated with complications of RFA. Results A total of 169 patients (median age, 63 years; interquartile range, 55-73 years; 85 men) with 217 tumors were evaluated. The total complication rate was 30.0% (65 of 217; 95% confidence interval [CI] 23.8%, 36.0%). The major complication rate was 2.3% (five of 217; 95% CI 0.8%, 5.3%), with secondary fracture being the most frequent event (1.8% [four of 217]). The minor complication rate was 27.7% (60 of 217; 95% CI 21.7%, 33.6%), with immediate postoperative pain being the most frequent event (18.0% [39 of 217]). Risk factors for all complications included tumor size greater than 3 cm (adjusted odds ratio [AOR], 2.4 [95% CI 1.2, 4.5]; P = .03) and previous radiation therapy (AOR, 3.8 [95% CI 2.0, 7.4]; P = .02). The only risk factor for minor complications was previous radiation therapy (AOR, 2.2 [95% CI 1.0, 4.7]; P = .04). Conclusion Bone tumor radiofrequency ablation is safe, with a low rate of major complications mainly consistent with secondary fractures. Risk factors for complications are tumor size greater than 3 cm and previous radiation therapy. © RSNA, 2020 Online supplemental material is available for this article

    Determination of Interactive States of Immune Checkpoint Regulators in Lung Metastases after Radiofrequency Ablation

    No full text
    Background: Cases of the spontaneous regression of multiple pulmonary metastases, after radiofrequency ablation (RFA), of a single lung metastasis, have been documented to be mediated by the immune system. The interaction of immune checkpoints, e.g., PD-1/PD-L1 and CTLA-4/CD80, may explain this phenomenon. The purpose of this study is to identify and quantify immune mechanisms triggered by RFA of pulmonary metastases originating from colorectal cancer. Methods: We used two-site time-resolved Förster resonance energy transfer as determined by frequency-domain FLIM (iFRET) for the quantification of receptor–ligand interactions. iFRET provides a method by which immune checkpoint interaction states can be quantified in a spatiotemporal manner. The same patient sections were used for assessment of ligand–receptor interaction and intratumoral T-cell labeling. Conclusion: The checkpoint interaction states quantified by iFRET did not correlate with ligand expression. We show that immune checkpoint ligand expression as a predictive biomarker may be unsuitable as it does not confirm checkpoint interactions. In pre-RFA-treated metastases, there was a significant and negative correlation between PD-1/PD-L1 interaction state and intratumoral CD3+ and CD8+ density. The negative correlation of CD8+ and interactive states of PD-1/PD-L1 can be used to assess the state of immune suppression in RFA-treated patients
    corecore