148 research outputs found

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Abnormal deactivation of the inferior frontal gyrus during implicit emotion processing in youth with bipolar disorder: Attenuated by medication

    Get PDF
    Previous neuroimaging studies of youth with bipolar disorder(BD) have identified abnormalities in emotion regulation circuitry. Using data from the Longitudinal Assessment of Manic Symptoms Cohort (a clinical sample recruited for behavioral and emotional dysregulation), we examined the impact of BD and medication on activation in these regions. Functional neuroimaging data were obtained from 15 youth with BD who currently were unmedicated with a mood stabilizer or antipsychotic (U-BD), 19 youth with medicated BD (M-BD), a non-bipolar clinical sample with high rates of disruptive behavioral disorders (non-BD, n=59), and 29 healthy controls (HC) while they were shown task-irrelevant morphing emotional faces and shapes. Whole brain analysis was used to identify clusters that showed differential activation to emotion vs. shapes across group. To assess pair-wise comparisons and potential confounders, mean activation data were extracted only from clusters within regions previously implicated in emotion regulation (including amygdala and ventral prefrontal regions). A cluster in the right inferior frontal gyrus (IFG) showed group differences to emotion vs. shapes (159 voxels, corrected p<.05). Within this cluster, U-BD youth showed decreased activation relative to HC (p=.007) and non-BD (p=.004) youth. M-BD also showed decreased activation in this cluster relative to HC and non-BD youth, but these differences were attenuated. Results were specific to negative emotions, and not found with happy faces. IFG findings were not explained by other medications (e.g. stimulants) or diagnoses. Compared to both HC and a non-BD sample, U-BD is associated with abnormally decreased right IFG activation to negative emotions

    Emotional Face Processing in Pediatric Bipolar Disorder: Evidence for Functional Impairments in the Fusiform Gyrus

    Get PDF
    Pediatric bipolar disorder involves poor social functioning, but the neural mechanisms underlying these deficits are not well understood. Previous neuroimaging studies have found deficits in emotional face processing localized to emotional brain regions. However, few studies have examined dysfunction in other regions of the face processing circuit. This study assessed hypoactivation in key face processing regions of the brain in pediatric bipolar disorder

    EFSA Panel on Biological Hazards (BIOHAZ) Panel; Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations)

    Get PDF
    Food of non-animal origin (FoNAO) is consumed in a variety of forms, and a major component of almost all meals. These food types have the potential to be associated with large outbreaks as seen in 2011 associated with VTEC O104. A comparison of the incidence of human cases linked to consumption of FoNAO and of food of animal origin (FoAO) was carried out to provide an indication of the proportionality between these two groups of foods. It was concluded that outbreak data reported as part of EU Zoonoses Monitoring is currently the only option for EU-wide comparative estimates. Using this data from 2007 to 2011, FoNAO were associated with 10% of the outbreaks, 26% of the cases, 35% of the hospitalisations and 46% of the deaths. If the data from the 2011VTEC O104 outbreak is excluded, FoNAO was associated with 10% of the outbreaks, 18% of cases, but only 8% of the hospitalisations and 5% of the deaths. From 2008 to 2011 there was an increase in the numbers of reported outbreaks, cases, hospitalisations and deaths associated with food of non-animal origin. In order to identify and rank specific food/pathogen combinations most often linked to human cases originating from FoNAO in the EU, a model was developed using seven criteria: strength of associations between food and pathogen based on the foodborne outbreak data from EU Zoonoses Monitoring (2007-11), incidence of illness, burden of disease, dose-response relationship, consumption, prevalence of contamination and pathogen growth potential during shelf life. Shortcomings in the approach using outbreak data were discussed. The top ranking food/pathogen combination was Salmonellaspp. and leafy greens eaten raw followed by (in equal rank) Salmonellaspp. and bulb and stem vegetables, Salmonellaspp. and tomatoes, Salmonellaspp. and melons, and pathogenic Escherichia coli and fresh pods, legumes or grain

    Parsing Dimensional vs Diagnostic Category–Related Patterns of Reward Circuitry Function in Behaviorally and Emotionally Dysregulated Youth in the Longitudinal Assessment of Manic Symptoms Study

    Get PDF
    Pediatric disorders characterized by behavioral and emotional dysregulation pose diagnostic and treatment challenges because of high comorbidity, suggesting that they may be better conceptualized dimensionally rather than categorically. Identifying neuroimaging measures associated with behavioral and emotional dysregulation in youth may inform understanding of underlying dimensional vs. disorder-specific pathophysiology

    Been There Done that: The Political Economy of Déjà Vu

    Full text link
    • …
    corecore