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Abstract

Purpose: To build a new treatment planning approach that extends beyond radiation transport and IMRT
optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused
decision making.

Methods: An in-house treatment planning system was modified to include multiobjective inverse planning, a
probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans
embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy
process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model
calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans.

Results: The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the
Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans,
and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each
plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for
variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in
agreement with an independent clinical study.

Conclusions: The radiation therapy model proposed has integrated a number of different physical, biological and
clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning
that can be improved and represents a more detailed description of the therapy process. A Markov model was
implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could
provide a practical, quantitative method for making difficult clinical decisions.
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Introduction
Radiation treatment planning programs (RTP) have his-
torically been models of radiation transport. Over the
years, the models have become more sophisticated.
The introduction of 3D anatomy and radiation source
modeling was an important step forward as was the
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introduction of more accurate models of radiation trans-
port. Better methods of inspecting the model outputs
were constructed, such as isodose lines, dose clouds, and
dose-volume histograms.
A significant addition to RTPs are inverse planning algo-

rithms that were introduced in order to manipulate the
model variables, namely beamlet intensities, that became
available with the introduction of computerized multi-
leaf collimators. These algorithms optimize the beamlet
intensities to achieve a set of objectives. While the orig-
inal intent was to provide a means of solving the highly
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complex dosimetric beam intensity problem, the algo-
rithms also serve as a de facto decision making process
[1–4]. Since the planning objectives are almost always
conflicting, it is often impossible to satisfy all the objec-
tives. The most common approach is to combine the
multiple objectives into a single linear combination; the
coefficients of the separate objectives being related in
some subjective manner to their relative values. However,
the actual form of the objective function can have a large
effect on the solutions which has led to the current prac-
tice of trial-and-error in which the weights and function
parameters are varied with little or no guidance as to
their effect on meeting clinical goals. Recently, there has
been published work on automating the inverse planning
process. For the most part, these approaches use geomet-
ric similarities between a given plan and historical cases
to provide a set of objectives for comparison. While this
approach can lead to improved clinical efficiencies and
may avoid a demonstrably poor plan, it involves a trade-
off between efficiency and a more personalized approach.
Our multiobjective optimization seeks to achieve both
goals.
Following the introduction of inverse planning algo-

rithms, it was recognized that purely dosimetric objec-
tive functions were unable to differentiate satisfactorily
between plans that were mathematically equivalent but
clinically quite different. This led to the development of
radiobiological response objectives that were modeled as
functions of the beamlet intensities [5–7]. While these
types of objectives are not yet as widespread as the dosi-
metric ones, numerous studies have demonstrated that
the solutions obtained aremore likely to satisfy the clinical
goals. Regardless of the forms of the objective functions,
however, the extensive research that has gone into the
form of inverse planning algorithms make it clear that it is
difficult to encode clinical reasoning in simple functions
of dosimetric variables.
The purpose of this paper is to describe a decision

support system for plan selection in radiation ther-
apy. Due to the complexity of each component of this

approach we have developed multiple methods indepen-
dently, and now report on the complete methodology.
Our goal was to address three basic weaknesses of the
prevailing model of radiation therapy planning. First, we
use a multiobjective optimization algorithm rather than
the conventional single objective approach. Second, our
method explicitly models outcomes of therapy as prob-
abilities, which more accurately reflects the state of our
knowledge. Third, the model can handle many differ-
ent types of variables besides dosimetric variables, and
the ultimate objective is related directly to clinical out-
comes. We present approaches to all three of these
issues, but concentrate on the latter two for reasons of
space.

Methods
Figure 1 illustrates the components of this RTP model. In
brief, the anatomy is combined with the radiation trans-
port to devise the basis for optimization of beam fluences.
Using a set of decision criteria, a multiobjective optimiza-
tion algorithm generates a set of plans; each plan in the
set achieves the objectives to varying degrees. An influ-
ence diagram (see Section below for a more complete
definition) models the radiation response of the patient
for each plan using both dosimetric and clinical variables
and information. Finally, the value (also known as the
utility) of each possible outcome is combined with the
life expectancy calculated by a Markov Model for that
outcome to achieve a ranking of the plans within the set.
The rationale for this particular combination of meth-

ods is as follows. Our multiobjective optimization algo-
rithm automatically generates a set of feasible plans that
capture a wide range of attitudes to the different possible
outcomes. This algorithm is more efficient andmore thor-
ough than is possible by an individual planner and by any
commercial multiobjective planning system. The produc-
tion of a set of plans requires the need to decide among
them. An influence diagram is an excellent means of rep-
resenting decisionmaking under uncertainty. It compactly
represents the relationships between chance variables and

Fig. 1 Flow diagram of the new treatment planning model. Objective functions and the patient and beammodel are input into a multiobjective
optimization algorithm which outputs a set of plans. The set of plan containing the dosimetric variables and patient variables are input into a
Bayesian network. The output is a set of probabilities for each of the possible outcomes; these in turn are combined with utilities for these outcomes
in a Markov Model in order to rank the plans
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the effects of possible decisions on the probabilities of
outcomes and the values of those outcomes. It is more
efficient than decision trees and more transparent than
neural networks. A Markov model has been used in place
of the traditional expected utility since it more accurately
reflects the long term consequences of decisions in radi-
ation therapy while at the same time making use of the
advantages of utilities. All research was carried out under
the guidelines of, and with the approval of, the University
of Washington’s Institutional Review Board.

Multiobjective optimization
The details of our multiobjective optimization algorithm
have been described earlier, and in this paper, we provide
a conceptual overview [8–10]. The space of all feasible
IMRT plans is very large and difficult to search efficiently.
We devised a staged approach that tries to balance the
size of the search with the time needed to complete the
search. The algorithm includes heuristics based on clinical
requirements to reduce the time.
At the highest level, we define a set of decision cri-

teria which can be of any mathematical form, such as
tumor control probability functions or dose-volume met-
rics. These objectives are assumed to be the most con-
sistent with the clinical goals. At a lower level, we define
a set of convex, dosimetric objective functions of the
form f (j) = ∑

i

(
di − dobjj

)2
, where i are the voxels in

the organ or target and there are N objectives and j ∈
{1, . . .N}. A single objective function is obtained as a lin-
ear combination of the dosimetric objectives using a set
of weighting parameters, wj; this convex problem is solved
deterministically to obtain one optimal plan.
In our algorithm, the plan space is searched by varying

the dosimetric objective function parameters, dobj,j, and
weighting parameters, wj. This is accomplished by means
of an evolutionary algorithm that treats these variables as
genes. As each plan is generated using particular values
of these parameters, the set of decision criteria functions
is applied to the plan, generating a set of decision objec-
tive values. Since we view this as a multiobjective decision
problem, we use the concept of Pareto optimality to deter-
mine whether one plan is superior to another. If all of the
decision criteria values of one plan are at least as good as
the values of a second plan, and at least one is better, then
the first plan dominates the second, and the second plan is
discarded as being inferior. In many cases, however, some
of the decision values of one plan are better and some are
worse when compared to those of the second plan. In this
case, neither plan dominates and both are kept.
The multiobjective evolutionary algorithm uses Pareto

dominant plans to generate “genes” with some probabil-
ity for mutation. The genetic component is a powerful
mathematical method for searching a large space when

the objectives are not convex functions. These genes are
used to create new plans that are then be compared to the
existing population and all inferior plans are eliminated.
Using this iterative process of reproduction and natural
selection, the population of plans will approach the Pareto
Front of optimal plans with respect to the decision cri-
teria. Once the algorithm generates plans that meet the
dosimetric constraints defined by the radiation oncolo-
gist, randomized trial or QUANTEC [11], it will continue
to search for better plans with superior decision objective
values as it approaches the Pareto Front. This could mean
greater organ sparing and PTV coverage than most plans
designed by human planners focused on meeting metrics.
The idea is provide a set of plans with a range of tradeoffs
which represent the optimal tradeoffs for further evalua-
tion by a radiation oncologist or Bayesian Network that
would ultimately result in selection of the single best plan.

Influence diagram (Bayesian network)
The second part of the model uses an influence diagram
to assess the radiation response for a given plan. Bayesian
networks (BN) are compact means of representing the
joint probabilities of a system. Influence diagrams build
on that mathematical framework of probabilistic relation-
ships in order to model decisions under uncertainty. An
influence diagram has decision nodes (encapsulating all
possible decisions) and utility nodes for representing rel-
ative values of different outcomes. Solving an influence
diagram for the optimal policy under given conditions
uses many of the same mathematical algorithms as a
Bayesian network. The output of the model is in terms
of probabilities for outcomes of the disease and normal
tissues. The goal was to devise a model that reflected
our current state of knowledge by using the same sources
that are currently used in clinical decisionmaking, namely
(a) results from clinical trials, (b) results from the clini-
cal research literature, and (c) expert opinion. Reflecting
our current knowledge, the model includes some mecha-
nistic elements as well as some more descriptive aspects
depending on how much of the underlying biology is
understood.
The Bayesian Network models the process of prognosis

[12, 13]. We have previously developed a methodology for
combining probabilistic prognostic modeling with multi-
attribute decision theory [4, 14], here we present an appli-
cation to multiobjective optimization with a model that
reproduces recent outcome data. In addition, our previ-
ous models have been revised and updated based on new
insights. Our original development was intended to con-
vey novel approaches in the uses of influence diagrams
in clinical decision support systems. These included the
use of influence diagrams as a tool for patient-specific
decisions, the integration of a range of evidence such
as clinical trials and physician judgment, and the use
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of Markov models in the algorithm for optimal policy
selection. Further model development has resulted in the
revised model which reproduces the results of an external
clinical cohort. We give an overview of the methodology
and introduce notation. Within a BN chance nodes rep-
resent the variables of the problem and the states of each
node represent the values that each variable can obtain,
and the probabilities of each state of a variable represents
current knowledge. The states can represent the prior
probabilities before any evidence is instantiated, posterior
probabilities, and certain knowledge. The arrows between
the nodes represent probabilistic dependencies between
the states of the nodes, and in a BN the arrows are said to
be drawn from parent nodes to child nodes. Conditional
probability tables provide the quantitative connections
between the parents and children. The probability that X
will take on the value xi given that the parent states are
aj and bk is P

(
X = xi|A = aj, B = bk

)
. The BN was imple-

mented using the software package Hugin (Hugin Expert
A/S, Aalborg, Denmark.)
The process for creating an BN involves writing down

the variables which affect the outcome of the treat-
ment, and drawing links between all of those variables
which influence one another. Each variable is charac-
terized by a set of possible states and each connection
symbolizes a conditional probability. Modeling methods
were employed in order to reduce the number of condi-
tional probabilities required [13]. For clarity, we introduce
the notation that the node variables are denoted using
the SMALL CAPS font. Variables in the BN are prefixed

by BN: and those in the Markov model (see below) by the
prefix MM:.
Our BN for prostate cancer prognosis following radio-

therapy consists of three separate networks dealing with
tumor control, rectal toxicity, and bladder toxicity. The
network for disease control is depicted in Fig. 2. The net-
work calculates the three probabilities which are used
by the Markov model: (a) biochemical control follow-
ing radiotherapy, (b) freedom from distant metastasis for
patients with biochemical control, (c) freedom from dis-
tant metastases for patients with biochemical relapse.
Distant metastases are modeled as spreading from the pri-
mary site and also as progression of initially present occult
metastases. We also explore another pathway which
models distant metastases as progression from regional
involvement of the lymph nodes. We explore different
assumptions about the possible cure rate of this pathway.
Patients with lymph node involvement that is detectable

at the time of disease staging have a different set of treat-
ment options, and we do not model this cohort. The
likelihood that our patient cohort has occult lymph node
involvement is predicted by their pathological staging
[15]. The node BN:LYMPH NODE INVOLVEMENT rep-
resents the probability that lymph nodes are initially
involved. As an example of the type of decision that may
be explored by this type of model we explore the outcomes
of lymph node treatment with whole-pelvic radiation.
PSA levels typically decrease following radiotherapy

treatment, and patients are said to have biochemical no-
evidence of disease (BNED) if their PSA levels remain

Fig. 2 Bayesian network representing response to radiation therapy of the prostate and regional lymph nodes. White ovals denote variables with
patient-specific clinical evidence; gray ovals denote chance variables; rectangular nodes are decision variables
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low. BNED failures arise from increased PSA produc-
tion at either the location of the primary disease or from
distant metastases. The conditional probabilities for the
node BN:BNED, in the absence of androgen deprivation,
come from a retrospective clinical analysis [16]. This study
used recursive partitioning analysis (RPA) and grouped
patients into one of four RPA classes with 5-year BNED
control rates. The doses used in this study (67 – 81 Gy)
are from the pre-IMRT era, as long-term survival evidence
accumulates it is a simple process to revise the probability
table of this node.
Many patients undergoing external beam radiotherapy

for prostate cancer also receive some form of androgen
deprivation therapy (ADT). The node BN:ANDROGEN
DEPRIVATION contains three states corresponding to no
ADT, 3-months of ADT, or 6-months of ADT. A large,
controlled, randomized trial [17] compared two differ-
ent short-term ADT treatment schedules to no-ADT for
patients receiving an average of 66 Gy to the prostate and
finds 5-year BNED failure rates of 28% for no ADT, 17%
for 3-months of ADT, and 12% for 6-months of ADT.
We selected this study to modify the predictions from the
study in Horwitz et al. [16] because it is one of the few
studies to include a cohort receiving no ADT.
An example of the expert-experience driven decision

making occurs in the BN:BNED’ node of the network. The
model includes two IMRT plan parameters, the volume of
the planning target volume (PTV) which receives a dose
lower than the prescription dose (BN:COLD SPOT), and
the equivalent uniform dose (EUD)[18] which is defined
as the uniform dose which would result in the same
amount of cell killing in the PTV as the planned non-
uniform dose-distribution. The conditional probability
table for BN:BNED’ reflects the belief that the probability
of tumor control is increased by larger values of the equiv-
alent uniform dose and smaller volumes which are below
the prescription dose within the PTV.
One pathway for development of distant metastases

is a post-treatment rise in PSA levels, modeled in the
node BN:DM1. The prognosis for patients with a ris-
ing PSA level is not well defined. One indicator is the

post-treatment PSA doubling time. At the time of radio-
therapy plan selection, however, the only information
available is pretreatment pathological staging. This stag-
ing can be used to predict the post-treatment PSA dou-
bling time for patients who fail, using T-stage, Gleason
score, and (pre-treatment) PSA level [19]. A rising PSA
level is not a perfect predictor for the development distant
metastases, of course, as some patients with a steady PSA
develop distant metastases and some patients with a ris-
ing PSA never develop distant metastases. The sensitivity
and specificity for the ASTRO definition [20] of biochem-
ical failure are 73% and 76%, respectively [21], and have
been incorporated into the node BN:DM1.
Another pathway for the development of metastases

included in the model is occult lymph node involvement,
modeled in the node BN:DM2, and BN:DISTANT METAS-
TASIS is modeled as an “or” node which is positive if either
pathway is positive. We include both pathways in this out-
come model to order to explore whether treatment of the
lymph nodes – given different possibilities of occult dis-
ease, patient preferences, and physician beliefs – is worth
additional treatment toxicity.
The BayesianNetwork for predicting toxicity is depicted

in Fig. 3. In prostate cancer, the rectum and the bladder are
the two primary organs at risk for complication. The prob-
ability for developing toxicity is modeled as a combination
of a normal tissue complication probability (NTCP) com-
putation, a consideration of hotspots in regions near the
organ at risk (OAR) at the time of imaging, and three dosi-
metric objectives which have been found to be predictive
in a retrospective analysis [22].
We calculate the NTCP with the Lyman-Kutcher

method [23–25]. The parameters used in our calculation
are averages from three studies [26–28]. Bladder compli-
cations are a less likely side effect of radiotherapy, and
only one study was found fitting bladder complications
to the Lyman-Kutcher model [29]. Both studies use end-
points similar to the descriptions presented to patients
for utility determination (discussed below). The NTCP
model includes dose-volume information based on an
organ volume as visualized by a CT scan. This static model

Fig. 3 Bayesian network representing normal tissue response to radiation therapy for cancer therapy. Bladder and rectum were the two normal
tissues selected
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does not account for set-up error or organ motion within
the patient. A hotspot near the rectum, for example, is
subject to some uncertainty in its daily location, and some
physicians prefer to keep the hotpot a distance away from
the rectum for this reason. The preference for plans with-
out a hotspot nearby reflects the physician belief that the
outcome for such a plan may be better than for a plan
with a hotspot nearby. We modeled this by increasing or
decreasing the probability of a complication as a func-
tion of whether hotspots – defined as a dose higher than
TD50 – were nearer or further from the organ. Such an
approach was based on observing clinical judgments and
recent results regarding rectal complications [30].

Markov cohort simulation
The Markov Model for calculating the Quality Adjusted
Life Expectancy (QALE) goes beyond the Bayesian Net-
work by calculating the longterm effects and also includes
the values associated with the expected outcomes. The
probabilities calculated by the Bayesian Network are used
an input to a Markov Cohort Simulation that is used
to track subsequent health state evolution. A Markov
Cohort Simulation follows some fixed number of simu-
lated patients through a state transition model, tracking
the amount of time spent in each state. The total amount
of time spent in each state divided by the number of
patients in the simulation yields the life expectancy. The
amount of time spent in each state is weighted by a util-
ity of that state to calculate the QALE. The QALE is then
used to rank the plans from best to worst.
For ourMarkovModel (see Fig. 4)many of the transition

probabilities are time-dependent. The probability to die of
natural causes is age-dependent and is taken from Social

Fig. 4 The Markov model used to calculate the quality-adjusted life
expectancy of a patient using transition probabilities from the
Bayesian network, and life expectancy data for a healthy individual

Security Administration Life Expectancy tables [31]. Dis-
tant metastases develop most commonly after it is discov-
ered that a patient has a rising PSA level, but they are also
discovered in the absence of PSA failure. The Bayesian
Network calculates the probabilities for development of
distant metastases through both mechanisms, in the node
BN:DISTANTMETASTASIS with different evidence (YES or
NO) entered into BN:PSA FAILURE.
A Markov Cohort simulation handles a certain time-

dependent transition probability by changing the tran-
sition probability each time the model is updated. This
method is used to handle probabilities which are a func-
tion of how much time has passed since the initiation of
the model. Two examples of this type of time-dependent
transition probability are the probability of death from
natural causes, which increases yearly as the patient ages,
and the probability to develop PSA failure, which is fixed
for the first 5 years after treatment and then set to zero.
Time-dependent transition probabilities which are not a

function of the model’s initial state are handled by tunnel
states. These states do not have a transition probabil-
ity back into themselves, and are used to model risks
that develop sometime after the first cycle. In our case
the probability to develop distant metastases in the first
3 years after developing a rising PSA is greater than in
subsequent years [19]. We model this situation by divid-
ing the biochemical failure period into an early, ≤ 3 years,
stage with a high probability for development of DM, and
a late, ≥ 4 stage. Both stages assume a constant rate
model, each with a different rate. The rate in the later stage
is set to one third that of the initial rate. Once the model
reaches 15 years post-RT the probability to transition into
the Distant Metastasis state is turned off.
P(DM|PSAControl = yes) determines the transition

probability from POST-RT to DISTANT METASTASIS and
is the probability that a patient will develop DM with-
out first developing a rising PSA. P(DM|PSAControl = no)

is the probability that a patient with biochemical failure
will develop distant metastases, and determines the tran-
sition probability from the tunnel states BIOCHEMICAL
FAILURE, YEAR 1,2, OR 3 to DISTANT METASTASIS. The
transition probability to develop DM without biochemi-
cal failure is turned off after year 5. The cycle-length is 1
year. The model runs from the time of RT until the patient
would be 119 years old, which is the oldest age for which
the SSA has life expectancy data. The median survival
time for patients who develop DM is 19 months [32].
The prognostic probabilities from the BN are cumula-

tive probabilities for certain events at certain time points,
defined by clinical studies. The probability calculated in
BN:BNED, for example, is the probability to have bio-
logical no evidence of disease at t = 5 years after the
beginning of RT. These prognostic, cumulative probabil-
ities are transformed into annual transition probabilities
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for the MM. Each annual transition probability is calcu-
lated by assuming a constant annual rate, ra, related to the
cumulative probability of an event from the BN as pc =
1−e−rat where pc is a cumulative probability from the BN,
and the subscript a denotes annual. The annual transition
probability pa for the MM is then simply pa = 1 − e−ra .
We consider late complications only and approximate

each complication as occurring at the end of the second
year of the simulation and persisting throughout the life-
time of the patient. Complications are assumed to affect
each state of the Markov model with an equal probability,
and they do not affect transition probabilities into other
Markov states. The effects of complications are neglected
for patients with metastatic cancer since the utility for
metastatic disease is much lower than for treatment side
effects for prostate cancer treated with radiotherapy.
The utilities for health states used in the QALE calcu-

lation were obtained from reference [33]. Three sets of
values were used: (1) the average values of the utilities
reported, (2) utilities which were two standard devia-
tions below the average, chosen to represent individuals
who are strongly averse to complications and (3) utilities
of 1.0 to reflect the preference for maximizing survival
regardless of cost. The cohort simulation is coded in the
programming language LISP [34].
In addition to examining decisions for specific patient

characteristics we performed a continuous sensitivity and
threshold analysis using linear regression metamodeling.
First, a probabilistic sensitivity analysis was performed on
the model, whereby the the probabilities and and utili-
ties in the model are represented by a normal distribution
which has been truncated to accurately represent physi-
cal values – for example between 0 and 1 for a transition
probability. 10,000 values are chosen at random from
each distribution which represent 10,000 separate patient
cohorts [35]. The output of this model is QALY values for
the different cohorts, and a linear regression model – a
metamodel – is fit to the model inputs and outcomes and
used to perform sensitivity analysis [36].

Results
In this initial report of our RTP model we have focused
on investigating the structure and accuracy of the system.
To this end, we present several different results. The first
was to perform a sensitivity study of the life expectancy
as a function of dose. The second was to compare the
calculations of survival and toxicity with an indepen-
dent study. The third was to calculate the outcomes for a
given plan for patients with a range of different charac-
teristics. The fourth was to investigate the output of the
model for a range of plans produced by the multiobjective
optimization procedure described above.
Unless otherwise stated, “high risk” patients were mod-

eled as a T2c, pre-treatment PSA = 25 ng/ml, Gleason

sum = 8, and “intermediate risk” as T2a, 15 ng/ml, 7.
Risk group classifications are according to the National
Comprehensive Cancer Network practice guidelines for
recurrence risk groups (www.nccn.org).
Sensitivity study: Table 1 is a sensitivity study for the

responses of the LE and QALE from increasing the tumor
dose for intermediate and high risk patient populations.
Clinical trials for 3D-conformal treatments have shown
little evidence of improved outcomes by raising the dose
of the intermediate risk patient above 74 Gy or for treat-
ing a high risk patient above 78 Gy [16]. For the change in
dose for the intermediate risk patient, the life expectancy
increases 8.4 months and the QALE increases by 4.8
months. For the high risk patient, the corresponding
increases are 6.0 and 3.6 months, respectively. The QALE
increases more for the intermediate risk patient than for
the high risk patient for the same absolute change in dose
because the lower dose results in fewer complications for
the intermediate risk. In both cases, the higher dose is
worth the risk.
Survival and toxicity calculations: Modeling a clinical

study from data presented in the literature can be difficult
if the patient data is presented in summary form only. Data
sets with patient specific dosimetry, age, clinical scoring,
treatment information, and outcome are rarely reported.
Modeling limitations aside, however, it is instructive to see
if a modeled cohort which approximates the average char-
acteristics of a clinical cohort performs similarly to the
clinical cohort.
Figure 5 presents comparisons of our model predictions

for overall survival and metastasis-free survival with a
randomized, prospective clinical trial, RTOG 92-02 [37],
which is different than the studies fromwhich we obtained
our modeling parameters (see above). This clinical trial
studied the difference between 4-months of ADT and a 2
year course of ADT on high risk (T2c-T4) prostate can-
cer patients. We compare our predictions for 3-months
of ADT with their short-term ADT results. The clini-
cal results reported a 95% confidence interval at year 10
of±3%; we apply the same interval as an approximation to
the entire time course. The greatest source of uncertainty
in our model is the BNED control rate, and we performed
a sensitivity analysis by varying the control rate for each

Table 1 Life expectancy (LE) [years] and quality-adjusted LE
(QALE) [years] for an intermediate risk and a high risk 60 year old
patient for different values of D95 [Gy]

Risk category Dose LE QALE

Intermediate 71 17.7 12.2

74 18.4 12.6

High 75 15.9 10.8

78 16.4 11.1

www.nccn.org
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Fig. 5 a Overall survival and bmetastasis-free survival from a recent
randomised, prospective clinical trial [37] (solid circles) compared
with predictions from the model (x marks)

RPA class between the control rates of the closest other
RPA classes. This results in uncertainties at year 10 in our
predictions for overall survival of 2%, and metastasis-free
survival of 2.5%. We do not plot the model uncertainties
in the figure for ease of reading. Themodel predictions for
overall survival and metastasis-free survival all fall within
the confidence interval of the clinical data.
Toxicity data for prostate cancer is more limited than

survival data since clinical trials are powered to see
effect sizes in survival, and toxicity rates in prostate can-
cer are generally low. Furthermore, bladder toxicity rates
for prostate cancer are notoriously inconsistent between
studies, due to sparse data and to the fact that bladder
motion is often not considered [38]. Finally, published
studies rarely – if ever – make available the dose distri-
butions that are required for an NTCP calculation. The
application of the model to multiobjective optimization
(see below) is an intended use of the model for patient-
specific decisions, where dosimetric data for multiple
treatment plans is available. For the sensitivity analysis
performed here the baseline grade 2 or greater toxicity
predictions for an intermediate stage patient receiving

whole pelvic radiotherapy are 15 and 16% for bowel
and bladder, respectively, compared with RTOG 92-02
[37] which reports an overall incidence of grade 2 or
greater bowel and bladder toxicities of 16 and 18%,
respectively.
Patient characteristic study: Table 2 compares QALEs

for different sets of patients treated with whole pelvic
radiotherapy (WPRT) or prostate only RT (PORT) under
different assumptions for the curative effect of lymph
node irradiation from WPRT. In the absence of definitive
data regarding the curative effects of RT for lymph node
disease, the decision about when to treat lymph nodes
is affected by a physician’s belief in the cure rate. We
examine two cure rates, 20 and 65%, to illustrate how per-
sonal physician beliefs can be encoded by the BN. Those
who believe that lymph node irradiation is not curative,
of course, would not elect to use WPRT. One argument
against treating with elective lymph node irradiation is
that it is generally believed to be associated with a higher
rate of side effects, although definitive data on complica-
tions with WPRT does not exist. For this study we mod-
eled WPRT as increasing the likelihood complications by
8% in each OAR.
The optimal choice for each patient is listed in the final

column of Table 2. The patient “max life” makes all deci-
sions in order to maximize life expectancy, regardless of
the severity of the complication outcome, therefore all
complication utilities are set to 1.0. This patient would
elect any treatment believed to offer a higher cure rate,
and whole-pelvic therapy is the optimal choice predicted
by the model for this patient set, regardless of age, risk
group, or the efficacy of whole pelvic radiotherapy (as long
as it is greater than zero). In general, whenever a single
factor is the deciding factor a decision model is not nec-
essary, in this case only an outcome model is needed in
order to predict cure rates. A recent study of prostate can-
cer complication state utilities found that 17% of those
surveyed were in this category [39]. For other attitudes
towards health states, the remainder of the patients, the
situation is more complex.
For patients with population-average attitudes towards

health states and intermediate to high risk disease, whole-
pelvic radiotherapy would be the optimal action, since
their high probability of lymph node involvement means
that the additional cure rate offered by WPRT more
than balances the additional toxicities. In our model the
BN calculates a 26% chance of lymph node involvement
(BN:LNI) for the high risk sample patients, and a 10%
chance for the intermediate risk patients. Note that the
recommendation for high-risk patients is independent of
the physician belief in the efficacy of WPRT within the
boundaries studied. The situation is more complex for
intermediate-risk patients with population average atti-
tudes towards health states since theQALE result depends
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Table 2 Quality Adjusted Life Expectancies [years] for different types of patients, and two different physician beliefs in the curative
ability of lymph node irradiation

Patient preference Age Risk group POa WPb65% WPc20% Optimal choiced

Min-complications 60 intermediate 12.0 11.4 11.0 PO

60 high 9.4 9.9 8.8 MD

75 intermediate 7.1 6.7 6.4 PO

75 high 5.8 5.9 5.3 MD

Population average 60 intermediate 12.3 12.6 12.1 MD

60 high 9.8 11.1 10.0 WP

75 intermediate 7.2 7.3 7.1 MD

75 high 6.0 6.6 6.1 WP

Max life 60 intermediate 12.5 13.1 12.7 WP

60 high 9.9 11.7 10.5 WP

75 intermediate 7.3 7.7 7.4 WP

75 high 6.1 7.0 6.3 WP

aPO = prostate-only RT
bWP65% = whole pelvic RT assuming a 65% cure rate for occult lymph node disease
cWP20% = whole pelvic RT assuming a 20% cure rate for occult lymph node disease
dMD = optimal choice depends upon physician belief in efficacy of nodal irradiation
Patients are stratified by age, disease risk group and attitude towards the balance between quantity and quality of life

on the physician’s belief in the efficacy of WPRT. If WPRT
is effective in 65% of the cases, then WPRT should be
elected, if WPRT is effective in only 20% of the cases,
then prostate-only treatment should be elected. For a 60
year old intermediate risk prostate patient with average
attitudes towards health states prostate-only radiotherapy
and whole-pelvic radiotherapy offer the same QALE if
whole-pelvic radiotherapy is curative in 40% of cases. In
this regard the model calls attention to the fact that bet-
ter data as to the efficacy of lymph node irradiation, both
in regards to the absolute value and uncertainty of the
control rate, is needed.
In order to provide recommendations for patients who

are highly averse to toxicities, the calculation was repeated
with utilities for toxicity states which were two standard
deviations below the population average, labeled “min-
complications” in Table 2. For intermediate risk patients in
this group, prostate-only therapy offers the highest QALE,
regardless of patient age, or the efficacy of lymph-node
irradiation, within the boundaries studied. The situation is
more complex for high-risk patient who are complication
averse, as their optimal choice depends on the physician belief
inWPRT,asimilar situation to the intermediate risk patients
with average attitudes towards toxicity discussed above.
The results of one-way continuous sensitivity analy-

sis for two patient utilities for toxicities is presented
in Fig. 6. QALYs are plotted on the vertical axis for
two strategies, PORT and WPRT, with the utility value
on the horizontal axis. The rest of the parameters are
held constant, and are for a 60 year old, PSA 22 ng/ml,
Gleason 4 + 3, T2a patient, with a WPRT control rate

of 50%. The steeper slope of the WPRT line reflects
the fact that the model predicts a higher incidence of
toxicities for WPRT, so varying the utility has a larger
affect on QALYs. In both cases a patient who assigns
a low utility to a toxicity state (complication-averse)
is offered higher QALYs by PORT due to its lower toxicity
rate, and a patient who assigns a higher utility to a toxic-
ity state is offered higher QALYs byWPRT from its higher
disease control rate.
The results of a two-way continuous threshold analy-

sis are presented in Fig. 7. The probability of lymph node
involvement is plotted on vertical axis, with the proba-
bility that whole-pelvic radiation controls disease plotted
on the horizontal axis. Other model parameters are held
constant for the same patient used in the previous exam-
ple, using population average values from the literature
for toxicity states [33]. The different colors depict which
strategy is dominant for different combinations of model
parameters. The region in blue offers the highest QALYs
for PORT for this patient, and the region in green is the
dominant strategy for WPRT. It is common practice for
physicians to offer lymph node irradiation to patients with
lymph node involvement above a particular threshold, this
analysis demonstrates that the physician’s belief in the effi-
cacy of WPRT should be taken into account when setting
this threshold.
Multiobjective optimization: The multiobjective

algorithm produced ten plans. Figure 8 shows the prostate
and rectum DVHs for the ten plans. The target objective
was 76 Gy to ≥95% of the volume. The QALEs were
calculated for a high risk and an intermediate risk 60 year
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Fig. 6 Sensitivity analysis for patient utilities for bladder and rectal toxicity

old patient with average attitudes towards risk. For the
high risk patient, the QALEs ranged from 10.6 – 11.6
years; for the intermediate risk patient they range from
12.6 – 12.7. The smaller range for the intermediate risk
patients stems from the fact that D95 for these plans are

all at or above the level found to be beneficial for interme-
diate risk patients and therefore there was little variation
between plans in the effects on control rates. The range
is due to the differences in EUD, the size of the cold spot,
and the probability of complications induced.

Fig. 7 Two-way threshold analysis for the probability of lymph node involvement and the control rate of lymph node irradiation. The strategy that
offers the most QALYs for the pair of parameters is the dominant strategy. WPRT is dominant strategy in the blue region of the plot, and PORT is the
dominant strategy in the green region
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Fig. 8 Dose volume histograms for the prostate and the rectum for 10 Pareto optimal plans generated by the multiobjective optimization routine

Discussion
The development of the model described above resulted
from the recognition that a number of different aspects of
current radiation therapy models were less than optimal
and needed to be improved if the field is to deal effectively
with the increased complexity of current and future prac-
tice. This complexity arises from the need to include large
numbers of variables in the optimization algorithm in an
effort to steer the result to a clinically desirable plan. It also
arises because the inverse planning algorithm has essen-
tially been transformed into a decision making algorithm
that must deal with the trade-offs inherent in the prob-
lem. The multiobjective approach we describe is a more
thorough approach to searching this high-dimensional
space and provides a better method for viewing the trade-
offs than our current trial-and-error methods which are
sensitive to the planner’s experience and preferences.
In selecting a method for improving the modeling of

radiation therapy, we were guided by the desire to incor-
porate a number of key attributes of the problem in the
model. The first was to deal explicitly with the probabilis-
tic nature of our knowledge between the parameters of
therapy and the outcomes. The second was to incorpo-
rate the diverse types of information that influence the
process of selecting between competing plans. Finally, the
model had to be flexible enough to adjust easily to the
introduction of new variables, e.g. biomolecular or genetic
information, and updated data regarding outcomes, such
as from recent clinical trials.
The current model builds on our previous work [4, 14, 40].

In that work, it was shown that a Bayesian network is

an appropriate mathematical framework for dealing with
the model attributes of interest. Comparisons of the cur-
rent prostate cancer model with that described in our
earlier work provide proof of the ability to modify and
add to the model. Important extensions were to repre-
sent the clinical reality by coupling the time-dependent
probabilities computed by the Bayesian Network with a
relevant clinical endpoint, namely QALE, through the
means of a Markov model and the inclusion of the effect
of androgen-deprivation therapy.
It should also be noted that BNs have another charac-

teristic that makes them an excellent choice as a med-
ical decision aid. The ability to inspect each node and
its role in the final probabilities makes it easy to iso-
late the most critical variables and to focus efforts at
improvements on the appropriate elements of the model.
This was seen clearly in the comparison of multiobjective
plans described above. For high risk patients, significant
differences in QALE were calculated; for intermediate
risk patients all QALEs were very similar. Inspecting the
nodes of the model, it was determined that for inter-
mediate risk patients, the dose chosen was high enough
that small differences in dose had negligible effect on the
outcome whereas for high risk patients, the differences
were notable. We repeated the experiment with a target
dose of 72 Gy and the results were reversed so that the
plan differences for the high risk patient were negligible
because the dose was too low to have a significant impact
on high risk patient survival. If these results do not match
expected outcomes, it is clear how to modify the model
to account for the changes. This example also illustrates
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nicely the effect of having mixed patient populations in
clinical studies. If a clinical study included patients in both
risk groups, it is clear how the effects of different doses
would be washed out.
In the biological realm, there exist models of the effects

of fractionation that are quite detailed with respect to
the biological mechanisms. While the predictive power
of these models is questioned by some, they are widely
used for calculating the dose required to maintain the
same biological effect when the fractionation schedule is
altered. Another active area of modeling is the effect of
dose at both the cellular and organ level. Swanson et al.
[41] have published a model describing the migration of
glioblastoma cells in the brain, thereby providing a possi-
ble explanation of the response of these types of tumors to
radiation therapy. Blijlevens et al. [42] published a detailed
model of the biological mechanisms involved inmucositis.
Benson et al. have developed a Markov model to calculate
the probabilities of lymph node involvement in head and
neck cancer [43]. To date, however, such models are rare
and have not made their way into regular clinical practice,
although our model could include their potential effects
on clinical decision-making.
As described above, there are logistic regression mod-

els for tumor control and normal tissue complications
which are used in inverse planning. One publication
[44] examines four different statistical logistic models
for predicting radiation-induced pneumonitis. This is an
interesting paper in that each of the four models were
derived from the same data set. Themodel-buildingmeth-
ods for each resulted in different sets of variables being
included. This paper demonstrated that even in this lim-
ited realm of a given patient data set better predictions
could be obtained by combining the models together, an
important feature of our model. This paper also showed
that different factors modified a basic logistic response
curve by shifting the curve along the dose axis. We
have used a similar procedure in combining effects in
our BN.
The role of mathematical models in predicting out-

comes of medical procedures is increasing in most
areas of medicine. Recent emphasis on evidence-based
medicine is likely to increase that role if the mod-
els are based on clinical data. The model described
in this paper, while designed to select an IMRT plan
most appropriate for given plans, can easily be expanded
to include more basic choices in the types of ther-
apies as well. In the context of public health deci-
sions, predictions of outcomes such as QALEs are even
more appropriate. We consider this to be a “fractal-like”
model, in that the conditional probability tables for any
node can be expanded to include another model that
uses more detailed mechanisms to provide probability
values.

As the model becomes further refined it may be possi-
ble to offer treatment guidelines for questions involving
elective therapies, as demonstrated in this work, by the
inclusion of the different possible cure rates of lymph-
node irradiation. In this context, modeling can identify
groups of patients grouped by similar characteristics such
as age, clinical staging, personal preferences, and achiev-
able planning (DVH) goals given patient geometry to
recommend an approach for an individual which offers
an optimal quality-adjusted life expectancy. This approach
is similar to the current standard of care where treat-
ment guidelines are based primarily, if not exclusively, on
clinical staging.
The next step in this project is to conduct a systematic

comparison between the rankings of a set of plans by
radiation oncologists with the rankings produced by this
model. The purpose will be to better understand the
variables used for clinical decision making and to fine-
tune the model to produce similar results. This process
will also help to determine the extent to which different
physicians can agree on plans and the reasons for their
agreement/disagreement.

Conclusion
A model of radiation therapy outcomes was described
in the context of multiobjective optimization for IMRT.
The model calculated life expectancies that were in
good agreement with an independent clinical study.
In the context of current model-building in radia-
tion oncology, this model is much more comprehen-
sive. In particular, this is the first model applied to
the results of a multiobjective optimization which uti-
lizes an evolutionary algorithm. Other models, such as
NTCP and EUD, are useful in providing key probabil-
ities in our model. The method is personalized in two
senses, one, the multiobjective optimization algorithm
works on individual patient anatomy, and two, individual
patient preferences can be used in the Markov Model to
optimize an individual’s QALE. Future work will focus
on tuning the model to obtain agreement with expert
opinion, and also will include modeling other tumor
sites.
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