18 research outputs found

    Biochemical testing for the diagnosis of Wilson\u27s disease: A systematic review

    Get PDF
    Background: Wilson\u27s disease (WD) is a rare inherited disorder that leads to copper accumulation in the liver, brain, and other organs. WD is prevalent worldwide, with an occurrence of 1 per 30,000 live births. Currently, there is no gold standard diagnostic test for WD. The objective of this systematic review is to determine the diagnostic accuracy for WD of three biochemical tests, namely hepatic copper, 24-hour urinary copper, and ceruloplasmin using the Leipzig criteria.Methods: Adhering to PRISMA guidelines, databases including PubMed/MEDLINE, CINAHL Plus, Web of Science, and Cochrane were searched. Studies that comprised of confirmed or suspected WD along with normal populations were included with adult and pediatric group. The sensitivity, specificity, negative predictive value and positive predictive value were computed using RevMan 5.4.Results: Nine studies were included. The best practice evidence for 24-hour urinary copper test ranged from a cutoff value of 0.64-1.6 μmol/24 h (N = 268; sensitivity = 75.6%, specificity = 98.3%). Hepatic copper test was optimally cutoff based on the ROC curve analysis at 1.2 μmol/g yielding a power of 96.4% sensitivity and 95.4% specificity (N = 1,150); however, the tried and tested 4 μmol/g cutoff, with 99.4% sensitivity and 96.1% specificity, is more widely accepted. The ceruloplasmin test cutoff value was found to be ranging from 0.14 to 0.2 g/L (N = 4,281; sensitivity = 77.1%-99%, specificity = 55.9%-82.8%).Conclusion: This paper provides a large-scale analysis of current evidence pertaining to the biochemical diagnosis of WD employing the Leipzig criteria. The laboratory values are typically based on specific subgroups based on age, ethnicity, and clinical subgroups. The findings of this systematic review must be used with caution, given the over- or under-estimation of the index tests

    Deep Semantic Segmentation and Multi-Class Skin Lesion Classification Based on Convolutional Neural Network

    Get PDF
    Skin cancer is developed due to abnormal cell growth. These cells are grown rapidly and destroy the normal skin cells. However, it's curable at an initial stage to reduce the patient's mortality rate. In this article, the method is proposed for localization, segmentation and classification of the skin lesion at an early stage. The proposed method contains three phases. In phase I, different types of the skin lesion are localized using tinyYOLOv2 model in which open neural network (ONNX) and squeeze Net model are used as a backbone. The features are extracted from depthconcat7 layer of squeeze Net and passed as an input to the tinyYOLOv2. The propose model accurately localize the affected part of the skin. In Phase II, 13-layer 3D-semantic segmentation model (01 input, 04 convolutional, 03 batch-normalization, 03 ReLU, softmax and pixel classification) is used for segmentation. In the proposed segmentation model, pixel classification layer is used for computing the overlap region between the segmented and ground truth images. Later in Phase III, extract deep features using ResNet-18 model and optimized features are selected using ant colony optimization (ACO) method. The optimized features vector is passed to the classifiers such as optimized (O)-SVM and O-NB. The proposed method is evaluated on the top MICCAI ISIC challenging 2017, 2018 and 2019 datasets. The proposed method accurately localized, segmented and classified the skin lesion at an early stage.Qatar University [IRCC-2020-009]

    An Integrated Design for Classification and Localization of Diabetic Foot Ulcer based on CNN and YOLOv2-DFU Models

    Get PDF
    Diabetes is a chronic disease, if not treated in time may lead to many complications including diabetic foot ulcers (DFU). DFU is a dangerous disease, it needs regular treatment otherwise it may lead towards foot amputation. The DFU is classified into two categories such as infection (bacteria) and the ischaemia (inadequate supply of the blood). The DFU detection at an initial phase is a tough procedure. Therefore in this research work 16 layers convolutional neural network (CNN) for example 01 input, 03 convolutional, 03 batch-normalization, 01 average pooling, 01 skips convolutional, 03 ReLU, 01 add (element-wise addition of two inputs), fully connected, softmax and classification output layers for classification and YOLOv2-DFU for localization of infection/ischaemia models are proposed. In the classification phase, deep features are extracted and supplied to the number of classifiers such as KNN, DT, Ensemble, softmax, and NB to analyze the classification results for the selection of best classifiers. After the experimentation, we observed that DT and softmax achieved consistent results for the detection of ischaemia/infection in all performance metrics such as sensitivity, specificity, and accuracy as compared with other classifiers. In addition, after the classification, the Gradient-weighted class activation mapping (Grad-Cam) model is used to visualize the high-level features of the infected region for better understanding. The classified images are passed to the YOLOv2-DFU network for infected region localization. The Shuffle network is utilized as a mainstay of the YOLOv2 model in which bottleneck extracted features through ReLU node-199 layer and passed to the YOLOv2 model. The proposed method is validated on the newly developed DFU-Part (B) dataset and the results are compared with the latest published work using the same dataset

    Recognition of different types of leukocytes using YOLoV2 and optimized bag-of-features

    Get PDF
    White blood cells (WBCs) protect human body against different types of infections including fungal, parasitic, viral, and bacterial. The detection of abnormal regions in WBCs is a difficult task. Therefore a method is proposed for the localization of WBCs based on YOLOv2-Nucleus-Cytoplasm, which contains darkNet-19 as a basenetwork of the YOLOv2 model. In this model features are extracted from LeakyReLU-18 of darkNet-19 and supplied as an input to the YOLOv2 model. The YOLOv2-Nucleus-Cytoplasm model localizes and classifies the WBCs with maximum score labels. It also localize the WBCs into the blast and non-blast cells. After localization, the bag-of-features are extracted and optimized by using particle swarm optimization(PSO). The improved feature vector is fed to classifiers i.e., optimized naïve Bayes (O-NB) & optimized discriminant analysis (O-DA) for WBCs classification. The experiments are performed on LISC, ALL-IDB1, and ALL-IDB2 datasets

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Clinically acquired new challenging dataset for brain SOL segmentation: AJBDS-2023

    No full text
    Space-occupying lesions (SOL) brain detected on brain MRI are benign and malignant tumors. Several brain tumor segmentation algorithms have been developed but there is a need for a clinically acquired dataset that is used for real-time images. This research is done to facilitate reporting of MRI done for brain tumor detection by incorporating computer-aided detection. Another objective was to make reporting unbiased by decreasing inter-observer errors and expediting daily reporting sessions to decrease radiologists’ workload. This is an experimental study. The proposed dataset contains clinically acquired multiplanar, multi-sequential MRI slices (MPMSI) which are used as input to the segmentation model without any preprocessing. The proposed AJBDS-2023 consists of 10667 images of real patients imaging data with a size of 320*320*3. Acquired images have T1W, TW2, Flair, T1W contrast, ADC, and DWI sequences. Pixel-based ground-truth annotated images of the tumor core and edema of 6334 slices are made manually under the supervision of a radiologist. Quantitative assessment of AJBDS-2023 images is done by a novel U-network on 4333 MRI slices. The diagnostic accuracy of our algorithm U-Net trained on AJBDS-2023 was 77.4 precision, 82.3 DSC, 87.4 specificity, 93.8 sensitivity, and 90.4 confidence interval. An experimental analysis of AJBDS-2023 done by the U-Net segmentation model proves that the proposed AJBDS-2023 dataset has images without preprocessing, which is more challenging and provides a more realistic platform for evaluation and analysis of newly developed algorithms in this domain and helps radiologists in MRI brain reporting more realistically

    Quantifying Osmotic Stress and Temperature Effects on Germination and Seedlings Growth of Fenugreek (<i>Trigonella</i> <i>foenum</i>-<i>graecum</i> L.) via Hydrothermal Time Model

    No full text
    Germination models are really useful in predicting seed germination, attributed to their application in economic crop management. Hence, we evaluated cardinal temperatures (Ts), seed germination behavior, and model coefficients of fenugreek under varying temperatures (Ts; 10, 20, 30, and 40 °C) and water potentials (ψs 0, −0.01, −0.02, and −0.05 MPa). We observed that the maximum and minimum hydrotime constant (θH) values at 20 °C, respectively. The base water potential at 50 percentiles (Ψb 50) exhibited an asymmetrical pattern with the highest (−0.9 MPa) value computed at 40 °C and the lowest (−0.13 MPa) at 10 °C. Furthermore, the ceiling temperature (TC), base temperature (Tb), and optimal temperature (To) of Fenugreek were determined to be 34.5 °C, 7.8 °C, and 18 °C, respectively. In addition, we observed that germination index, germination rate index, germination percentage, germination energy, Timson germination index, seed vigor index I and II, and root-shoot ratio are at their highest values at 20 °C and lowest at −0.05 MPa at 40 °C. Based on our findings, we suggest that the hydrothermal time model (HTT) can be used to explore the independent and synergistic effects of both T and ψ on the germination of seeds in different environmental conditions. The obtained model coefficients indicate that fenugreek is temperature-sensitive and suitable for agriculture in irrigated regions
    corecore