27 research outputs found
Financial Transmission Rights and Auction Revenue Rights
Abstract: This paper surveys on two important issues in restructured power systems. One of them is Financial Transmission (FTR). Financial transmission right is a financial instrument which can improve the liquidity of operation in power system from point of view of all decision makers in competitive power systems. Another approach is Auction Revenue Rights (ARR) which ARR allocation consistent with congestion as determined by the FTR Auction. Analysis of these two mechanism and their impacts on long-term operation of power system are considered in this paper. Suppliers and large consumer, therefore, desire to contract in FTR to hedge their long-term risks. The FTR mechanism is based on the after settling market and determination Locational Marginal Price (LMP). In this area, delivery of energy (quantity and price) from the amount of FTRs which supplier is bidding for distinct path, and the price that the supplier is willing to pay for each FTR, are determined. This paper surveys on the longterm conditions of the FTR and mature one
Infrastructure Resource Planning in Modern Power System
Abstract: Generation Expansion Planning (GEP) is one of the most important issues in long-term power system planning. In from past, investigators noticed to GEP and supply of energy. In power system planning, generation expansion planning is performed for 5-yrears planning horizon or more. There are two main objective functions in GEP. First is the minimization of investment cost and another one is the maximization of reliability. GEP use future likeable engineering economics function, in order to drive certain indicator. Supply of fuel problem is one of the most important of effective factors for result. For this reason, Some times GEP and fuel supply center go hand-inhand. In this case, construction and operation cost of transmission network add to power system costs. This paper presents the simultaneous generation expansion planning with Natura
Wide-Area Composite Load Parameter Identification Based on Multi-Residual Deep Neural Network
Accurate and practical load modeling plays a critical role in the power system studies including stability, control, and protection. Recently, wide-area measurement systems (WAMSs) are utilized to model the static and dynamic behavior of the load consumption pattern in real-time, simultaneously. In this article, a WAMS-based load modeling method is established based on a multi-residual deep learning structure. To do so, a comprehensive and efficient load model founded on combination of impedance–current–power and induction motor (IM) is constructed at the first step. Then, a deep learning-based framework is developed to understand the time-varying and complex behavior of the composite load model (CLM). To do so, a residual convolutional neural network (ResCNN) is developed to capture the spatial features of the load at different location of the large-scale power system. Then, gated recurrent unit (GRU) is used to fully understand the temporal features from highly variant time-domain signals. It is essential to provide a balance between fast and slow variant parameters. Thus, the designed structure is implemented in a parallel manner to fulfill the balance and moreover, weighted fusion method is used to estimate the parameters, as well. Consequently, an error-based loss function is reformulated to improve the training process as well as robustness in the noisy conditions. The numerical experiments on IEEE 68-bus and Iranian 95-bus systems verify the effectiveness and robustness of the proposed load modeling approach. Furthermore, a comparative study with some relevant methods demonstrates the superiority of the proposed structure. The obtained results in the worst-case scenario show error lower than 0.055% considering noisy condition and at least 50% improvement comparing the several state-of-art methods.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
Phytochemical properties and antiviral effect of green tea (Camellia sinensis) extract on adenovirus in vitro
Background and aims: The lack of effective antiviral drugs for adenoviruses is one of the most important problems in this area. The aim of this study was to investigate the phytochemical properties and antiviral effect of the green tea extract (GTE) on adenovirus in HEp2 cells in vitro. Methods: In this experimental study, dried leaves of green tea were extracted by maceration. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity of the extract were measured by Folin-Ciocalteu, aluminum chloride, and 2,2-diphenyl-1- picrylhydrazyl (DPPH) colorimetric methods, respectively. The amounts of some phenolic compounds in the extract were also determined using high-performance liquid chromatography. The toxicity of the extract on Hep2 cells and antiviral activity of the extract on adenovirus were assessed by the MTT colorimetric method. The half-maximum cytotoxicity concentration (CC50) and the 50 inhibitory concentration (IC50) of the extract were calculated as well. Results: Phytochemical investigations showed that the IC50 of DPPH radical was 42.1 ± 3.2 μg/mL compared with butylated hydroxytoluene (IC50 of 33.5 ± 3.67 μg/mL). The TPC and TFC of the extract were 74.2 mg GAE/g and 16.3 mg RE/g of the dry extract, respectively. The extract demonstrated the highest amounts of syringic acid, gallic acid, 3,4-dihydroxybenzoic acid, and rutin levels (67.27, 20.12, 7.39, and 2.97 mg/g DW, respectively). Based on the results of cell culture, the CC50 and IC50 of GTE were 103.3 μg/mL and 25.16 μg/mL, respectively. Conclusion: GTE with phenolic and flavonoid compounds can exert dose-dependent inhibitory effects on adenoviruses
Phenotype and genetic determination of resistance to common disinfectants among bioflm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran
Background: Pseudomonas aeruginosa is a common pathogen in Hospitalized patients, and its various resistance
mechanisms contribute to patient morbidity and mortality. The main aims of the present study were to assess the susceptibility of bioflm-producing and non-producing P. aeruginosa isolates to the fve commonly used Hospital disinfectants, to evaluate the synergistic efect of selected disinfectants and Ethylene-diamine-tetra acetic acid (EDTA), and
the efect of exposure to sub-inhibitory concentrations of Sodium hypochlorite on antimicrobial susceptibility test.
Results: The results showed that sodium hypochlorite 5% and Ethanol 70% were the most and least efective
disinfectants against P. aeruginosa, respectively. The addition of EDTA signifcantly increased the efectiveness of the
selected disinfectants. The changes in the antibiotic-resistance profles after exposure to sub-inhibitory concentrations of disinfectants were observed for diferent classes of antibiotics (Carbapenems, Aminoglycosides, Cephalosporins, Fluoroquinolones). As well as near the all isolates harbored efux pump genes and 117 (97.5%) of isolates
produced bioflm.
Conclusion: In the current study, the mixture of disinfectant and EDTA were the most suitable selection to disinfect Hospital surfaces and instruments. Also, it was clear that exposure to sub-inhibitory concentrations of Sodium
hypochlorite results in resistance to some antibiotics in P. aeruginosa species. Strong and intermediate bioflm formers
belonged to MDR/XDR strains. Future studies should include more complex microbial communities residing in the
Hospitals, and more disinfectants use in Hospitals.
Keywords: Nosocomial infection, Disinfectant-resistance, Bioflm, Hospital disinfectants, Pseudomonas aeruginosa,
Clinical isolate
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019
Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed